
LECTURE 23

LECTURE OUTLINE

• Review of subgradient methods

• Application to differentiable problems - Gradi-
ent projection

• Iteration complexity issues

• Complexity of gradient projection

• Projection method with extrapolation

• Optimal algorithms

******************************************

• Reference: The on-line chapter of the textbook

All figures are courtesy of Athena Scientific, and are used with permission.
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SUBGRADIENT METHOD

• Problem: Minimize convex function f : ◆n ⌘⌦ ◆
over a closed convex set X.

• Subgradient method - constant step α:

− ⇢̃xk+1

= PX xk αk f(xk) ,

where ⇢̃f(xk) is a subgradien

�

t of f at x

⇥

k, and PX(·)
is projection on X.

• Assume ⇠⇢̃f(xk)⇠ ⌃ c for all k.

• Key inequality: For all optimal x⇥

⇠xk+1

− x⇥⇠2 ⌃ ⇠xk − x⇥⇠2 − 2α
�
f(xk)− f⇥ + α2c2

• Convergence to a neighborhood result:

⇥

αc2

lim inf f(xk) ⌃ f⇥ +
k⌅⌃ 2

• Iteration complexity result: For any ⇧ > 0,
αc2 + ⇧

min f(xk) ⌃ f⇥ + ,
0⇤k⇤K 2

where K =
�

minx
⇤ 2⇤2X⇤ ↵x0−x ↵

.
α⇥

• For α = ⇧/c2, we need O(1/

�

⇧2) iterations to get
within ⇧ of the optimal value f⇥.
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GRADIENT PROJECTION METHOD

• Let f be differentiable and assume

• Gradien

⌃⌃⇢f(x)−⇢f(y)

t projection

⌃⌃ ⌃ L ⇠x− y⇠, ✓ x, y ✏ X

method:

xk+1

= PX

�
xk − α⇢f(xk)

• Define the linear approximation fun

⇥

ction at x

!(y; x) = f(x) +⇢f(x)⇧(y − x), y ✏ ◆n

• First key inequality: For all x, y ✏ X

L
f(y) ⌃ !(y; x) +

2
⇠y − x⇠2

• Using the projection theorem to write

�
xk − α⇢f(xk)− xk+1

⇥⇧
(xk − xk+1

) ⌃ 0,

and then the 1st key inequality, we have

1 L
f(xk+1

) ⌃ f(xk)−

so

⌥
α
−

2

�
⇠xk+1

− xk⇠2

there is cost reduction for α ✏ 0, 2

L

� ⇥
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ITERATION COMPLEXITY

• Connection with proximal algorithm

y = arg min
�

1
!(z; x) + ⇠z − x⇠2 =

z⌥X 2α

 
PX

�
x−α⇢f(x)

• Second� key⇥inequality: For any x ✏ X, if y =

⇥

PX x− α⇢f(x) , then for all z ✏ X, we have

1 1 1
!(y; x)+

2α
⇠y−x⇠2 ⌃ !(z; x)+

2α
⇠z−x⇠2−

2α
⇠z−y⇠2

• Complexity Estimate: Let the stepsize of the
method be α = 1/L. Then for all k

L minx⇤ X⇤ ⇠x 2

0

f(xk)− f⇥ ⌃ ⌥ − x⇥⇠
2k

• Thus, we need O(1/⇧) iterations to get within ⇧
of f⇥. Better than nondierentiable case.

• Practical implementation/same complexity: Start
with some α and reduce it by some factor as many
times as necessary to get

1
f(xk+1

) ⌃ !(xk ; xk) +
2α
⇠x 2

+1 k+1

− xk⇠
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SHARPNESS OF COMPLEXITY ESTIMATE

f(x)

x0 

Slope c

• Unconstrained minimization of
�

c |x|2 if |x ⇧
f(x) = 2

| ⌃ ,
2

c⇧|x|− c⇥ if |x| > ⇧
2

• With stepsize α = 1/L = 1/c and any xk > ⇧,

1 1
xk+1

= xk − ⇢f(xk) = xk
L

− c ⇧ = xk
c

− ⇧

• The number of iterations to get within an ⇧-
neighborhood of x⇥ = 0 is |x

0

|/⇧.

• The number of iterations to get to within ⇧ of
f⇥ = 0 is proportional to 1/⇧ for large x

0

.
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EXTRAPOLATION VARIANTS

• An old method for unconstrained optimiza-
tion, known as the heavy-ball method or gradient
method with momentum:

xk+1

= xk − α⇢f(xk) + ⇥(xk − xk−1

),

where x = x and ⇥ is a scalar with 0 < ⇥ < 1.−1 0

• A variant of this scheme for constrained prob-
lems separates the extrapolation and the gradient
steps:

yk = xk + ⇥(xk − xk−1

), (extrapolation step),

xk+1

= PX

�
yk − α⇢f(yk)

⇥
, (grad. projection step).

• When applied to the preceding example, the
method converges to the optimum, and reaches a
neighborhood of the optimum more quickly

• However, the method still has an O(1/⇧) itera-
tion complexity, since for x

0

>> 1, we have

xk+1

− xk = ⇥(xk − xk−1

)− ⇧

so xk+1

− xk ≈ ⇧/(1− ⇥), and the number of itera-
tions needed to obtain xk < ⇧ is O (1− ⇥)/⇧ .

� ⇥
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OPTIMAL COMPLEXITY ALGORITHM

• Surprisingly with a proper more vigorous ex-
trapolation ⇥k ⌦ 1 in the extrapolation scheme

yk = xk + ⇥k(xk − xk−1

), (extrapolation step),

xk+1

= PX

the

�
yk − α⇢f(yk)

⇥
, (grad. projection step),

method has iteration complexity O

•

�
1/
⇡
⇧
⇥
.

Choices that work

⌃k(1
⇥k =

− ⌃k−1

)

⌃k−1

where the sequence {⌃k} satisfies ⌃
0

= ⌃
1

✏ (0, 1],
and

1− ⌃k+1

1 2

⌃2

k+1

⌃ , ⌃k
⌃2

k

⌃
k + 2

• One possible choice is

⇥k =

�
0 if k = 0, 1 if k = 1
k−1

− ,
if ⌃ =

k ⌥ 1, k
k+2

�
2

k+2

if k ⌥ 0.

• Highly unintuitive. Good performance reported.
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EXTENSION TO NONDIFFERENTIABLE CASE

• Consider the nondifferentiable problem of min-
imizing convex function f : ◆n ⌘⌦ ◆ over a closed
convex set X.

• Approach: “Smooth” f , i.e., approximate it
with a differentiable function by using a proximal
minimization scheme.

• Apply optimal complexity gradient projection
method with extrapolation. Then an O(1/⇧) iter-
ation complexity algorithm is obtained.

• Can be shown that this complexity bound is
sharp.

• Improves on the subgradient complexity bound
by a an ⇧ factor.

• Limited experience with such methods.

• Major disadvantage: Cannot take advantage
of special structure, e.g., there are no incremental
versions.
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