LECTURE 23

LECTURE OUTLINE

e Review of subgradient methods

e Application to differentiable problems - Gradi-
ent projection

e Iteration complexity issues
e Complexity of gradient projection
e Projection method with extrapolation

e Optimal algorithms
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e Reference: The on-line chapter of the textbook

All figures are courtesy of Athena Scientific, and are used with permission.



SUBGRADIENT METHOD

e Problem: Minimize convex function f : " — R
over a closed convex set X.

e Subgradient method - constant step a:
Lk4+1 — PX (azk — ak@f(xk)),

where @f(:ck) is a subgradient of f at xx, and Px(-)
1s projection on X.

o Assume |V f(z)| < c for all .
e Key inequality: For all optimal z*

wnss =217 < ok — ") = 20(F(ax) = f7) + 0

e Convergence to a neighborhood result:
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e Iteration complexity result: For any € > 0,
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where K = {minw*GX* ”"”0_5”*”2J

o For a =¢/c*, we need O(1/€*) iterations to get
within € of the optimal value f~*.



GRADIENT PROJECTION METHOD

e Let f be differentiable and assume
V@) =VIiW)| <Lllz—yl, VazyeX

e Gradient projection method:

Tr+1 = Px (CEk — an(iEk;))

e Define the linear approximation function at x

ly;z) = fl2) + V() (y—z), yeR"
e First key inequality: For all z,y € X

F) < tyi) + 2 lly -l

e Using the projection theorem to write

(zr — aV f(zk) — $k+1)/($k — 2kt1) <0,

and then the 1st key inequality, we have
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so there is cost reduction for a € (O, %)



ITERATION COMPLEXITY

e Connection with proximal algorithm

Yy = argmi)lg {E(z; x) + %Hz — a:||2} = Px (x—onf(x))

zE

e Second key inequality: For any x € X, if y =
Px (x — onf(a:)), then for all z € X, we have
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Uy o)+ o lly—2l® < 6z 2)+5- =2l = o o=yl

e Complexity Estimate: Let the stepsize of the
method be o = 1/L. Then for all &

Lminx*ex* ||$0 —z" ||2
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e Thus, we need O(1/¢) iterations to get within e
of f*. Better than nondifferentiable case.

e Practical implementation/same complexity: Start
with some « and reduce it by some factor as many
times as necessary to get
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SHARPNESS OF COMPLEXITY ESTIMATE

f(z) A

Slope ce

e Unconstrained minimization of

f(:p):{%'xP . =

cele] — &5 if |z > €

e With stepsize a =1/L = 1/c and any xx > e,

1 1
Tr+1 =Tk — =V f(xr) = a1 — Ece = T — €

L

e The number of iterations to get within an e-
neighborhood of z* = 0 is |xo|/e.

e The number of iterations to get to within e of
f* =0 is proportional to 1/e for large xo.



EXTRAPOLATION VARIANTS

e An old method for unconstrained optimiza-
tion, known as the heavy-ball method or gradient
method with momentum:

Trpy1 = Tk — aV f(xr) + B(xr — Th—1),

where z_1 = z9 and 3 is a scalar with 0 < 3 < 1.

e A variant of this scheme for constrained prob-
lems separates the extrapolation and the gradient
steps:

yr = T + B(xr — TK—1), (extrapolation step),

Tpir1 = Px (y;,C — onf(yk)>, (grad. projection step).

e When applied to the preceding example, the
method converges to the optimum, and reaches a
neighborhood of the optimum more quickly

e However, the method still has an O(1/e) itera-
tion complexity, since for xo >> 1, we have

Lk+1 — Tk = ﬁ(wk — CUk—l) — €

SO Tx+1 — 2k ~ €/(1 — 3), and the number of itera-
tions needed to obtain xx < € is O((l — B)/e).
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OPTIMAL COMPLEXITY ALGORITHM

e Surprisingly with a proper more vigorous ex-
trapolation G — 1 in the extrapolation scheme

Y = Tk + Br(Tk — Tr_1), (extrapolation step),

Tes1 = Px (yr — aVf(yx)), (grad. projection step),

the method has iteration complexity O(l / \/E)
e Choices that work

Or(1 — Or—1)

Br = 6

where the sequence {6} satisfies 6 = 61 € (0, 1],

and 1— 0 1 2
— Vk+1
< O < ———
02, — 6% = k42

e One possible choice is

5 {0 if k=0, . {1 if k=—1,
k p— _ . k p— .
Bl g >, rs ifE>0.

e Highly unintuitive. Good performance reported.



EXTENSION TO NONDIFFERENTIABLE CASE

e (Consider the nondifferentiable problem of min-
imizing convex function f : R" — R over a closed
convex set X.

e Approach: “Smooth” f, i.e., approximate it
with a differentiable function by using a proximal
minimization scheme.

e Apply optimal complexity gradient projection
method with extrapolation. Then an O(1/¢) iter-
ation complexity algorithm is obtained.

e Can be shown that this complexity bound is
sharp.

e Improves on the subgradient complexity bound
by a an € factor.

e Limited experience with such methods.

e Major disadvantage: Cannot take advantage
of special structure, e.g., there are no incremental
versions.
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