
LECTURE 22

LECTURE OUTLINE

• Incremental methods

• Review of large sum problems

• Review of incremental gradient and subgradient
methods

• Combined incremental subgradient and proxi-
mal methods

• Convergence analysis

• Cyclic and randomized component selection

• References:

(1) D. P. Bertsekas, “Incremental Gradient, Sub-
gradient, and Proximal Methods for Convex
Optimization: A Survey”, Lab. for Informa-
tion and Decision Systems Report LIDS-P-
2848, MIT, August 2010

(2) Published versions in Math. Programming
J., and the edited volume “Optimization for
Machine Learning,” by S. Sra, S. Nowozin,
and S. J. Wright, MIT Press, Cambridge,
MA, 2012.

All figures are courtesy of Athena Scientific, and are used with permission.
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LARGE SUM PROBLEMS

• Minimize over X  ◆n

m

f(x) =
⌧

fi(x), m is very large,
i=1

where X, fi are convex. Some examples:

• Dual cost of a separable problem.

• Data analysis/machine learning: x is parame-
ter vector of a model; each fi corresponds to error
between data and output of the model.
− Least squares problems (fi quadratic).
− !

1

-regularization (least squares plus !
1

penalty):

min ⇤
x

The nondifferenti

⌧n ⌧m
|xj | + (c⇧ix− di)

2

j=1 i=1

able penalty tends to set a large
number of components of x to 0.

• Min of an expected value minx E
⇤
F (x, w)

⌅
-

Stochastic programming:

min

↵
F

1

(x) + Ew{min F
2

(x, y, w)
x y

⌅�

• More (many constraint problems, distributed
incremental optimization ...)
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INCREMENTAL SUBGRADIENT METHODS

• The special structure of the sum

m

f(x) =
⌧

fi(x)

i=1

can be exploited by incremental methods.

• We first consider incremental subgradient meth-
ods which ˜move x along a subgradient ⇢fi of a
component function fi NOT the (expensive) sub-
gradient of f , which is

�
˜

i
⇢fi.

• At iteration k select a component ik and set

xk+1

= PX

�
xk − ˜αk⇢fik (xk)

with ˜ fi (xk) being a subgradient of

⇥
,

⇢ k fik at xk.

• Motivation is faster convergence. A cycle
can make much more progress than a subgradient
iteration with essentially the same computation.
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CONVERGENCE PROCESS: AN EXAMPLE

• Example 1: Consider

1
min (1
x⌥ 2

⇤
− x)2 + (1 + x)2

⌅

• Constant stepsize: Convergence to a limit cycle

• Diminishing stepsize: Convergence to the opti-
mal solution

• Example 2: Consider

min 1 +
x

⇤
+

⌥ 
|1− x| | x| + |x|

⌅

• Constant stepsize: Convergence to a limit cycle
that depends on the starting point

• Diminishing stepsize: Convergence to the opti-
mal solution

• What is the effect of the order of component
selection?
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CONVERGENCE: CYCLIC ORDER

• Algorithm

xk+1

= PX

�
xk − ˜αk⇢fik (xk)

• Assume all subgradients generated b

⇥

y the algo-
rithm are bounded: ⇠⇢̃fik (xk)⇠ ⌃ c for all k

• Assume components are chosen for iteration
in cyclic order, and stepsize is constant within a
cycle of iterations (for all k with ik = 1 we have
αk = αk+1

= . . . = αk+m−1

)

• Key inequality: For all y ✏ X and all k that
mark the beginning of a cycle

⇠xk+m−y⇠2 ⌃ ⇠x 2

k−y⇠ −2αk

�
f(xk)−f(y)

⇥
+α2

km2c2

• Result for a constant stepsize αk ⇧ α:

m2c2

lim inf f(xk) ⇥ + α
k⌅⌃

⌃ f
2

• Convergence for αk ↵ 0 with
�⌃

αk =
k=0

∞.
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CONVERGENCE: RANDOMIZED ORDER

• Algorithm

xk+1

= PX

�
xk − ˜αk⇢fik (xk)

⇥

• Assume component ik chosen for iteration in
randomized order (independently with equal prob-
ability)

• Assume all subgradients generated by the algo-
rithm are bounded: ⇠⇢̃fik (xk)⇠ ⌃ c for all k

• Result for a constant stepsize αk ⇧ α:

mc2

lim inf f(xk) ⌃ f⇥ + α
k⌅⌃ 2

(with probability 1)

• Convergence for αk ↵ 0 with
�⌃

αk =
(with probability 1)

k=0

∞.

• In practice, randomized stepsize and variations
(such as randomization of the order within a cycle
at the start of a cycle) often work much faster
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PROXIMAL-SUBGRADIENT CONNECTION

• Key Connection: The proximal iteration

x = arg min
�

1
f(x) + ⇠x− x ⇠2k+1 k

x⌥X 2αk

 

can be written as

xk+1

= PX

where ˜ f(xk+1

) is some

�
⇢̃xk − αk f(xk+1

)
⇥

⇢ subgradient of f at xk+1

.

• Consider an incremental proximal iteration for
m

minx X

�
f⌥ i(x)

i=1

1
xk+1

= arg min fik (x) + x x 2

k
x⌥X

�
2αk

⇠ − ⇠
 

• Motivation: Proximal methods are more “sta-
ble” than subgradient methods

• Drawback: Proximal methods require special
structure to avoid large overhead

• This motivates a combination of incremental
subgradient and proximal
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INCR. SUBGRADIENT-PROXIMAL METHODS

• Consider the problem

m
def

min F (x) = Fi(x)
x⌥X

⌧

i=1

where for all i,

Fi(x) = fi(x) + hi(x)

X, fi and hi are convex.

• We consider combinations of subgradient and
proximal incremental iterations

1
zk = arg min

�
fik (x) +

x⌥X 2αk
⇠x− xk⇠2

 

xk+1

= PX

�
zk − ⇢̃αk hik (zk)

• Variations:

⇥

− Min. over ◆n (rather than X) in proximal
− Do the subgradient without projection first

and then the proximal

• Idea: Handle “favorable” components fi with
the more stable proximal iteration; handle other
components hi with subgradient iteration.
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CONVERGENCE: CYCLIC ORDER

• Assume all subgradients generated by the algo-
rithm are bounded: ⇠⇢̃fi (xk)⇠ ⌃ ˜c, ⇠⇢hi (xk)⇠ ⌃
c for all k, plus mild additional

k

conditions
k

• Assume components are chosen for iteration in
cyclic order, and stepsize is constant within a cycle
of iterations

• Key inequality: For all y ✏ X and all k that
mark the beginning of a cycle:

⇠x 2

k − 2

+m y⇠ ⌃ ⇠xk−y⇠ −2αk

�
F (xk)−F (y)

⇥
+⇥α2

km2c2

where ⇥ is a (small) constant

• Result for a constant stepsize αk ⇧ α:

m2c2

lim inf f(xk) ⌃ f⇥ + α⇥
k⌅⌃ 2

• Convergence for αk ↵ 0 with
�⌃

αk =
k=0

∞.
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CONVERGENCE: RANDOMIZED ORDER

• Result for a constant stepsize αk ⇧ α:

mc2

lim inf f(xk) f⇥ + α⇥
k⌅⌃

⌃
2

(with probability 1)

• Convergence for αk ↵ 0 with
�⌃

αk =
k=0

∞.
(with probability 1)
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EXAMPLE

• !
1

-Regularization for least squares with large
number of terms

m
1

min ⇤
x⌥ n

✏
⇠x⇠

1

+
2

⌧
(c⇧ix− di)

2

i=1

⇣

• Use incremental gradient or proximal on the
quadratic terms

• Use proximal on the ⇠x⇠
1

term:

1
zk = arg min ⇤

x⌥ n

�
⇠x⇠

1

+ x
αk
⇠x

2
− k⇠2

 

• Decomposes into the n one-dimensional mini-
mizations

zj
k = arg min

xj⌥ 

�
1

⇤ |xj | +
2αk

|xj − xj
k|

2

 
,

and can be done in closed form

✏
xj

k
j

− ⇤αk if ⇤αk ⌃ xj
k,

zk = 0 if −⇤αk < xj < ⇤αkk ,
xj

k + ⇤αk if xj
k ⌃ −⇤αk.

Note that “small” coordinates xj
k are set to 0.•
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