LECTURE 21

LECTURE OUTLINE

e Generalized forms of the proximal point algo-
rithm

e Interior point methods
e Constrained optimization case - Barrier method

e (Conic programming cases

All figures are courtesy of Athena Scientific, and are used with permission.



GENERALIZED PROXIMAL ALGORITHM

e Replace quadratic regularization by more gen-
eral proximal term.

e Minimize possibly nonconvex f :— (—oo, o].
A
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Ye+1 — Dig1 (2, Tr41)
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e Introduce a general regularization term Dy :
R" > (—o0, 00

Tk+1 € arg min {f(x) + Dk(af;,xk)}
xeERM

e Assume attainment of min (but this is not au-
tomatically guaranteed)

e Complex/unreliable behavior when f is noncon-
vex



SOME GUARANTEES ON GOOD BEHAVIOR

e Assume
Dy(z,xr) > Dr(zk, Tk), VeeR", k (1)
Then we have a cost improvement property:

f(xk+1) + Di (w1, k) — DT, k)
< f(xr) + Di(zk, ) — Di(xk, Tk )
J

e Assume algorithm stops only when z, in optimal
solution set X*, i.e.,

T € arg mg%n {f(x) + Di(z, )} = axp€ X
ek

e Then strict cost improvement for z, ¢ X~
e Guaranteed if f is convex and

(a) Dg(-,zx) satisfies (1), and is convex and dif-
ferentiable at zy

(b) We have

ri(dom(f)) N ri(dom(Dk(-,aﬁk))) #+ 0



EXAMPLE METHODS

e Bregman distance function

Di(z,y) = — (¢() — p(y) — Vo) ( — 1)),

Ck
where ¢ : R" — (—o00. 00| 1s a convex function. dif-
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ferentiable within an open set containing dom(f),
and ¢ is a positive penalty parameter.

e Majorization-Minimization algorithm:
Dy (z,y) = My (2, y) — My (y,y),
where M satisfies
Mi(y,y) = f(y), VyeR" k=01,
My (z,zx) > f(xk), VeeR" k=0,1,...

o Example for case f(z) = R(x)+ | Az —b||*, where
R is a convex regularization function

M(z,y) = R(z) + || Az = b]|* — [[ Az — Ay||* + |z — y|°

e Expectation-Maximization (EM) algorithm (spe-
cial context in inference, f nonconvex)



INTERIOR POINT METHODS

e Consider min f(x) s. t. g;(z) <0, j=1,...,r

e A barrier function, that is continuous and
goes to oo as any one of the constraints g;(xz) ap-
proaches 0 from negative values; e.g.,

T

B@) ==Y {-g@®)}, B =-3 gj%x).

e Barrier method: Let

xk:argmin{f(a:)+ekB(a:)}, k=0,1,...,
xeS

where S = {z | gj(z) < 0,5 = 1,...,r} and the
parameter sequence {e} satisfies 0 < ex41 < € for
all £ and ¢, — 0.

eB(z)
€ <e

Boundary of S | | |- € B(x) Boundary of S




BARRIER METHOD - EXAMPLE
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minimize f(z) = %((371)2 + (372)2)

subject to 2 < z',

o

with optimal solution z* = (2,0).
e Logarithmic barrier: B(z) = —In(z' — 2)
e We have z;, = (1 + m,o) from
Ty € arg 511;; {%((331)2 + (x2)2) —epln(z' — 2)}
o As ¢ is decreased, the unconstrained minimum
r, approaches the constrained minimum z* = (2, 0).

e As e — 0, computing z, becomes more difficult
because of ill-conditioning (a Newton-like method
is essential for solving the approximate problems).
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CONVERGENCE

e Every limit point of a sequence {x} generated
by a barrier method is a minimum of the original
constrained problem.

Proof: Let {z} be the limit of a subsequence {xx }recx.
Since zr € S and X is closed, 7 is feasible for the
original problem.

If 7 is not a minimum, there exists a feasible
z* such that f(z*) < f(zZ) and therefore also an
interior point z € S such that f(z) < f(z). By the
definition of xy,

f(CUk) =+ EkB(in) < f(j) -+ EkB(EE)v vk,
so by taking limit

f(@)+ liminf e,B(zk) < f(Z) < f(T)

k—oo, keK

Hence liminfy o ker exB(xg) < 0.

If z € S, we have 1imk—>oo,keK ekB(CEk) = 0,
while if T lies on the boundary of S, we have by
assumption limg— oo, ek B(xxr) = 0o. Thus

liminf ex B(zr) > 0,

k— oo

— a contradiction.



SECOND ORDER CONE PROGRAMMING

e Consider the SOCP

minimize 'z

subject to Az —b, € C;, i=1,...,m,

where z € R™, ¢ is a vector in R", and for i =
1,...,m, A; is an n; X n matrix, b; is a vector in
R, and C; is the second order cone of R":.

e We approximate this problem with

minimize ¢z + e Y Bi(Aiw — by)
1=1
subject to =z e R", A;x —b;, €int(C;), i =1,...,m,

where B; is the logarithmic barrier function:
Bi(y) = —In(yn, — (Wi +- +yn,—1)), y€int(Ci),

and {e;} is a positive sequence with ¢, — 0.

e Essential to use Newton’s method to solve the
approximating problems.

e Interesting complexity analysis



SEMIDEFINITE PROGRAMMING

e (Consider the dual SDP

maximize b\

subject to D — (M A1+ -+ AnAnm) € C,

where b € ™, D, A;,..., A,, are symmetric ma-
trices, and C is the cone of positive semidefinite
matrices.

e The logarithmic barrier method uses approxi-
mating problems of the form

maximize b'A+exln (det(D—AA; —- - —AmAm))

over all A € ®™ such that D — (M A1+ -+ A An)
is positive definite.

e Here e, >0 and ¢, — 0.

e Furthermore, we should use a starting point

such that D — A1 Ay — -+ — A\ A, 18 positive def-
inite, and Newton’s method should ensure that
the iterates keep D — A1 A1 —--- — A\ Ay, within the

positive definite cone.
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