LECTURE 20

LECTURE OUTLINE

e Proximal methods

e Review of Proximal Minimization
e Proximal cutting plane algorithm
e Bundle methods

e Augmented Lagrangian Methods

e Dual Proximal Minimization Algorithm
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e Method relationships to be established:

Outer Linearization

_ Proximal Cutting
P | Meth
roximal Method > Plane/Bundle Method

Fenchel Fenchel
Duality Duality
Dual Proximal Method p Proximal Simplicial

Decomp/Bundle Method

Inner Linearization

All figures are courtesy of Athena Scientific, and are used with permission.
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RECALL PROXIMAL MINIMIZATION

Slope Apy1
/ Optimal dual

proximal solution

Optimal primal
proximal solution

e Minimizes closed convex proper f:

1
_— 1 —_— - 2
Tp41 = arg xrgéer}z {f(:c) + e |z — k| }

where xg is an arbitrary starting point, and {cy}
1S a positive parameter sequence.

e We have f(xy) — f*. Also xrp — some mini-
mizer of f, provided one exists.

e Finite convergence for polyhedral f.

e Fach iteration can be viewed in terms of Fenchel
duality.



PROXIMAL/BUNDLE METHODS

e Replace f with a cutting plane approx. and/or
change quadratic regularization more conservatively.

e A general form:

vii1 € argmin{ Fy(z) + pi ()}

Fi(x) = max{f(a:o)—l—(a:—a:o)/go, Cee f(a:k)+(a:—xk)/gk}

1
pr(x) = 5|z —yx®
QCk

where cj is a positive scalar parameter.

e We refer to px(x) as the proximal term, and to
its center yx as the prozimal center.

N —
Ve [

Change y; in different ways => different methods.



PROXIMAL CUTTING PLANE METHODS

e Keeps moving the proximal center at each iter-
ation (yr = z1)

e Same as proximal minimization algorithm, but

f is replaced by a cutting plane approximation
Fk:

. 1 2
F — |l —
Tri1 € arg irélg(l{ () + er |z — x| }

where

Fr(x) = ma,x{f(ato)—i—(a:—a;o)’go, e f(:z:k)—l—(a:—a:k)/gk}

e Drawbacks:

(a) Stability issue: For large enough ¢, and
polyhedral X, xri1 is the exact minimum
of F, over X in a single minimization, so
it is identical to the ordinary cutting plane
method. For small ¢, convergence is slow.

(b) The number of subgradients used in F}
may become very large; the quadratic pro-
gram may become very time-consuming.

e These drawbacks motivate algorithmic variants,
called bundle methods.



BUNDLE METHODS

e Allow a proximal center yi # wx:
Tri1 € arg %%{Fk(x) + pr(z) }
Fr(x) = max{f(:vo)—i—(x—xo)’go, e f(a:k)+(:v—:1:k)’gk}
pr(@) = g llo = wil

e Null/Serious test for changing y;: For some
fixed g € (0,1)

_ Jawesr 13 flyk) — f(xR41) = Bor,
T Vg if flyr) = f@een) < B0,

O = fyr) — (Fr(@kt1) + pr(zpt1)) > 0

|
|
0
|
|

Ye Yr+1 = Tk+1 T Yk = Yk+1 Tkl x

Serious Step Null Step



REVIEW OF FENCHEL DUALITY
e (Consider the problem

minimize fi(x) + fa(x)

subject to x € R",

where f1 and f> are closed proper convex.

e Duality Theorem:

(a) If f* is finite and ri(dom(f1)) Nri(dom(f2)) #
@, then strong duality holds and there exists
at least one dual optimal solution.

(b) Strong duality holds, and (x*, \*) is a primal
and dual optimal solution pair if and only if

* . AN * . !N\ *
T € arg mrg;%%{fl(x)—x A }, T € arg mrg;ér}%{fg(x)—l—x A }

e By Fenchel inequality, the last condition is equiv-
alent to

A€ dfi(x") lor equivalently z* € df;(\*)]
and
—\* € dfa(z¥) lor equivalently z* € 9f3(—\*)]
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GEOMETRIC INTERPRETATION

e When f; and/or f, are differentiable, the opti-
mality condition is equivalent to

N =Vfi(z*) and/or X' = -—Vfa(z")



DUAL PROXIMAL MINIMIZATION

e The proximal iteration can be written in the
Fenchel form: min,{fi(z) + f2(z)} with

f@) = f@),  fol@) = —— |z — 2]

- QCk

e The Fenchel dual is

minimize f7(A) + f5 (=)
subject to A € R”

e We have f3(—)) = —z,A + Z||\||%, so the dual
problem is

minimize f*(\) — )\ + %H)\”Q

subject to X e R”

where f* is the conjugate of f.
e f> is real-valued, so no duality gap.

e Both primal and dual problems have a unique
solution, since they involve a closed, strictly con-
vex, and coercive cost function.



DUAL PROXIMAL ALGORITHM

e (an solve the Fenchel-dual problem instead of
the primal at each iteration:

Aevr = arg min {1 O) = kA + TIAIPE )

e Lagragian optimality conditions:

Tk41 € arg mg%{w’)\kﬂ — f(a:)}

x e

_ 1
Th+1 = arg min {$/>\k+1 + §||I - ka”Q}
reR™ k

or equivalently,

Lk — Tk+1
Ck

Ak+1 € af($k+1), Akt1 =

e Dual algorithm: At iteration k, obtain Api:
from the dual proximal minimization (1) and set

Tkl = Tk — CkAk+1

e As x, converges to a primal optimal solution z*,
the dual sequence A\, converges to 0 (a subgradient
of f at x*).



VISUALIZATION

e %’°||,\||2 V)

Slope = =
I %
|
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/ Ak+1 / 0 \\ A
Ok Slope = Tg41
Slope = i )
Primal Proximal Iteration Dual Proximal Iteration

¢ The primal and dual implementations are
mathematically equivalent and generate iden-
tical sequences {zy}.

e Which one is preferable depends on whether f
or its conjugate f* has more convenient structure.

e Special case: When —f is the dual function of
the constrained minimization ming)<o F(z), the
dual algorithm is equivalent to an important gen-
eral purpose algorithm: the Augmented Lagrangian
method.

e This method aims to find a subgradient of the
primal function p(u) = mingy<, F(z) at v = 0
(i.e., a dual optimal solution).
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AUGMENTED LAGRANGIAN METHOD

e (Consider the convex constrained problem

minimize f(x)
subject to z € X, FEx=d

e Primal and dual functions:

p(w) = inf  f(z), q(u) = inf {f(z)+u'(Bx—d)}

e Assume p: closed, so (¢, p) are “conjugate” pair.

e Proximal algorithms for maximizing g:

arg max { () — 5l — g}
pi1 = arg max qq(p) — 5 llu = p

C

wer = arg min {p(u) + pu + 5 lul* |
ueR™ 2

Dual update: Uk4+1 = Wk + CrUk+1

e Implementation:

Ugar1 = Brryr1 — d, Ti4+1 € arg IIél)I{l Le, (x, pr)
X

where L. is the Augmented Lagrangian function

Le(a,p) = f(2) + 4 (Bx — d) + 5| Bz — d|f
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GRADIENT INTERPRETATION

e Back to the dual proximal algorithm and the

dual update Apy1 =~ =

e Proposition: Ayt can be viewed as a gradient:

Lk — Lk+1
>\k—|—1 = c s — vgbck (xk)a
k

where

selz) = it {f@)+ 5o llo— 21}

reRM

e So the dual update xx11 = zx — ckAxy1 can be
viewed as a gradient iteration for minimizing ¢.(z)
(which has the same minima as f).

e The gradient is calculated by the dual prox-
imal minimization. Possibilities for faster meth-
ods (e.g., Newton, Quasi-Newton). Useful in aug-
mented Lagrangian methods.
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PROXIMAL LINEAR APPROXIMATION

e Convex problem: Min f: R" — R over X.

e Proximal outer linearization method: Same
as proximal minimization algorithm, but f is re-
placed by a cutting plane approximation Fj:

: 1
Tr+1 € arg min {Fk(x) + EHJZ — ka2}
T
)\k+1 _ Lk — Tk+1

Ck

where g; € 0f(x;) for i < k and
Fy(z) = max{ f(z0)+(x—20) g0, - . ., f(zp) +(z—21) gk } +6x ()

e Proximal Inner Linearization Method (Dual
proximal implementation): Let F} be the con-
jugate of Fy. Set

Ak11 € arg )\rgg}% {F;:(A) — xﬁc)\ + %H)\HQ}

Tkl = Tk — CkAk+1

Obtain gx11 € 0f(xk+1), either directly or via

/ *
A — (A
Jrt1 € arg{gggg{wkﬂ N}

e Add gri1 to the outer linearization, or zx;1 to
the inner linearization, and continue.
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PROXIMAL INNER LINEARIZATION

e It is a mathematical equivalent dual to the outer
linearization method.

' gri 0' \ = )\’
/

Slope = x

e Here we use the conjugacy relation between
outer and inner linearization.

e Versions of these methods where the proximal
center is changed only after some “algorithmic
progress” is made:

— The outer linearization version is the (stan-
dard) bundle method.

— The inner linearization version is an inner
approximation version of a bundle method.
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