LECTURE 19

LECTURE OUTLINE

e Proximal minimization algorithm

e FExtensions
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Consider minimization of closed proper convex f :
Rn — (—o0, 400] using a different type of approx-
imation:

e Regularization in place of linearization

e Add a quadratic term to f to make it strictly
convex and “well-behaved”

e Refine the approximation at each iteration by
changing the quadratic term

All figures are courtesy of Athena Scientific, and are used with permission.
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PROXIMAL MINIMIZATION ALGORITHM

e A general algorithm for convex fn minimization

1

= j — ||z — 2|2
Tp+1 € arg min {f(af)+ Q%HIL’ | }

— f:R" — (—00,00] is closed proper convex
— ¢, 18 a positive scalar parameter

— x0 is arbitrary starting point

e I exists because of the quadratic.

e Note it does not have the instability problem of
cutting plane method

o If x; is optimal, xx11 = .

o If Y, ¢ =00, f(xr) — f* and {zx} converges
to some optimal solution if one exists.
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CONVERGENCE

f(xr)

Yk

Yk — Z”T Tk

Tp Lp i x
e Some basic properties: For all k

(Tk — Try1)/ck € Of (Th1)

SO T}, to x4+ move is “nearly” a subgradient step.

e For all £ and y € k"

|zrt1—=ylI* < Nlew—yl* =2k (f(@rs1)—f () = |26 —Trs1]”

Distance to the optimum is improved.

e Convergence mechanism:

1

f(Tre1) + 2—H$k+1 —xk||? < f(zr).
Ck

. 1 2
Cost improves by at least 5 —|lzk41 — zl|?, and
this is sufficient to guarantee convergence.
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RATE OF CONVERGENCE I

e Role of penalty parameter cg:

|
Tk Tk+1 Tr42 T* T Tk

e Role of growth properties of f near optimal
solution set:

! |
Tk Tkl Ty T* T Tk TR |z T



RATE OF CONVERGENCE I1

e Assume that for some scalars 3 > 0, 0 > 0, and
a > 1,

f* +5(d(5€))a < f(x), VaxeRr withd(zx) <d

where

d(r) = min ||x — z*||

r*reX*

i.e., growth of order a from optimal solution
set X*.

o If « =2 and limg_, cx = ¢, then

1
lim sup Ak11) <

k—oo d(Tk) 1+ Be

linear convergence.

o Ifl <a <2, then

lim sup d@k11)
k— o0 (d(l'k)) 1/(a—1)

< 0

superlinear convergence.



FINITE CONVERGENCE

e Assume growth order o = 1:
f*+pBd(x) < f(x), V x € Rr,

e.g., f is polyhedral.

e Method converges finitely (in a single step for
co sufficiently large).

Hy) xr1 T2 = Ix* a xo T T



IMPORTANT EXTENSIONS

e Replace quadratic regularization by more gen-
eral proximal term.

e Allow nonconvex f.

Vi

|
|
Y — Di(z, 1) | l\
Ye+1 — Drg1 (T, Trt1)
| | |
>
Tk Tk+1 Tkt+2 T 4

e Combine with linearization of f (we will focus
on this first).
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