
LECTURE 19

LECTURE OUTLINE

• Proximal minimization algorithm

• Extensions

********************************************

Consider minimization of closed proper convex f :
�n → (−⇣,+⇣] using a different type of approx-
imation:

• Regularization in place of linearization

• Add a quadratic term to f to make it strictly
convex and “well-behaved”

• Refine the approximation at each iteration by
changing the quadratic term

◆

All figures are courtesy of Athena Scientific, and are used with permission.
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PROXIMAL MINIMIZATION ALGORITHM

• A general algorithm for convex fn minimization

1
xk+1 ⌘ arg min

x⌦�n

�
f(x) +

2ck
�x− xk�2

�

− f : �n → (−⇣,⇣] is closed proper convex

− ck is a positive scalar parameter

− x0 is arbitrary starting point

◆

k

k − 1
2ck

⇥x − xk⇥2

f(x)

xxk+1xk x

f(xk)

• xk+1 exists because of the quadratic.

• Note it does not have the instability problem of
cutting plane method

• If xk is optimal, xk+1 = xk.

• If k ck = ⇣, f(xk) → f⇤ and {xk} converges
to some optimal solution if one exists.

�
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CONVERGENCE

k

k − 1
2ck

⇥x − xk⇥2

f(x)

xxk+1xk x

f(xk)

• Some basic properties: For all k

(xk − xk+1)/ck ⌘ ◆f(xk+1)

so xk to xk+1 move is “nearly” a subgradient step.

• For all k and y ⌘ �n

⇠xk+1

−y⇠2 ⌃ ⇠xk−y⇠2−2ck

�
f(xk+1

)−f(y)
⇥
−⇠x 2

k−xk+1

⇠

Distance to the optimum is improved.

• Convergence mechanism:

1
f(xk+1) + �x �2k+1 − xk < f(xk).

2ck

Cost improves by at least 1 xk+1 x 2
k2ck

� − � , and
this is su⌅cient to guarantee convergence.
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RATE OF CONVERGENCE I

• Role of penalty parameter ck:

f(x)

xxk+1xk xxk+2

f(x)

xxk+1
xk xxk+2

• Role of growth properties of f near optimal
solution set:

f(x)

xxk+1xk xxk+2

f(x)

xxk+1xk x
xk+2
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RATE OF CONVERGENCE II

• Assume that for some scalars ⇥ > 0, ⌅ > 0, and
α ≥ 1,

f⇤ + ⇥
�
d(x)

⇥α ⌥ f(x),  x ⌘ �n with d(x) ⌥ ⌅

where
d(x) = min �x− x⇤

x⇤⌦X⇤
�

i.e., growth of order α from optimal solution
set X⇤.

• If α = 2 and limk c⌃ k = c̄, then

d(x
lim sup k+1) 1

k d(x⌃ k)
⌥

1 + ⇥c̄

linear convergence.

• If 1 < α < 2, then

d(x
lim sup k+1)

k⌃ 
� <

1/(α 1)
d(xk)

⇥ − ⇣

superlinear convergence.
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FINITE CONVERGENCE

• Assume growth order α = 1:

f⇤ + ⇥d(x) ⌥ f(x),  x ⌘ �n,

e.g., f is polyhedral.

f(x)

x
X

f

f + d(x)

Slope Slope

• Method converges finitely (in a single step for
c0 su⌅ciently large).

f(x)

x

f(x)

xxx0x0 x1 x2 = x

6



IMPORTANT EXTENSIONS

• Replace quadratic regularization by more gen-
eral proximal term.

• Allow nonconvex f .

f(x)

xxk+1xk xxk+2

k  Dk(x, xk)

k+1  Dk+1(x, xk+1)

k

k+1

• Combine with linearization of f (we will focus
on this first).
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