
LECTURE 18

LECTURE OUTLINE

• Generalized polyhedral approximation methods

• Combined cutting plane and simplicial decom-
position methods

• Lecture based on the paper

D. P. Bertsekas and H. Yu, “A Unifying Polyhe-
dral Approximation Framework for Convex Op-
timization,” SIAM J. on Optimization, Vol. 21,
2011, pp. 333-360.

All figures are courtesy of Athena Scientific, and are used with permission.
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Lecture Summary

Outer/inner linearization and their duality.

f(x)

x0x0 x1 x2 0

F (x)

y

Outer Linearization of f

Slope = y0

Slope = y1
Slope = y2

f

y2y1y0

Inner Linearization of Conjugate f

f(y)
F (y)

A unifying framework for polyhedral approximation methods.
Includes classical methods:

Cutting plane/Outer linearization
Simplicial decomposition/Inner linear
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ization

Includes new methods, and new versions/extensions of old methods.



Polyhedral Approximation Extended Monotropic Programming Special Cases

Vehicle for Unification

Extended monotropic programming (EMP)

m

min f

i

(x
i

)
(x1,...,x

m

)2S

X

i=1

where f

n

i

i

: < 7! (−1,1] is a convex function and S is a subspace.

The dual EMP is
m

min
X

f

?
i

(y
i

)
(y1,...,y

m

)2S

?
i=1

where f

?
i

is the convex conjugate function of f

i

.
Algorithmic Ideas:

Outer or inner linearization for some of the f

i

Refinement of linearization using duality
Features of outer or inner linearization use:

They are combined in the same algorithm
Their roles are reversed in the dual problem
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Become two (mathematically equivalent dual) faces of the same coin



Polyhedral Approximation Extended Monotropic Programming Special Cases

Advantage over Classical Cutting Plane Methods

The refinement process is much faster.
Reason: At each iteration we add multiple cutting planes (as many as one
per component function f

i

).
By contrast a single cutting plane is added in classical methods.

The refinement process may be more convenient.
For example, when f

i

is a scalar function, adding a cutting plane to the
polyhedral approximation of f

i

can be very simple.
By contrast, adding a cutting plane may require solving a complicated
optimization process in classical methods.
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Polyhedral Approximation Extended Monotropic Programming Special Cases

Outline

1 Polyhedral Approximation
Outer and Inner Linearization
Cutting Plane and Simplicial Decomposition Methods

2 Extended Monotropic Programming
Duality Theory
General Approximation Algorithm

3 Special Cases
Cutting Plane Methods
Simplicial Decomposition for min

x2C

f (x)
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Outer Linearization - Epigraph Approximation by Halfspaces

Given a convex function f

n: < 7! (−1,1].

Approximation using subgradients:

max
˘

f (x0) + y0
0(x − x0), . . . , f (x

k

) + y

k

0(x − x

k

)

where

¯

y

i

2 @f (x
i

), i = 0, . . . , k

x0 x1x2

f(x)

x

dom(f)

f(x0) + y⇤
0(x − x0)

f(x1) + y⇤
1(x − x1)
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Convex Hulls

Convex hull of a finite set of points x

i

x0

x1

x2

x3

Convex hull of a union of a finite number of rays R

i

R0

R1
R2
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Inner Linearization - Epigraph Approximation by Convex Hulls

Given a convex function h : <n 7! (−1,1] and a finite set of points

y0, . . . , y

k

2 dom(h)

Epigraph approximation by convex hull of rays (y
i

, w) | w ≥ h(y
i

)
˘ ¯

0y0 y1 y2 y

h(y)
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Conjugacy of Outer/Inner Linearization

Given a function f : <n 7! (−1,1] and its conjugate f

?.

The conjugate of an outer linearization of f is an inner linearization of f

?.

f(x)

x0x0 x1 x2 0

F (x)

y

Outer Linearization of f

Slope = y0

Slope = y1
Slope = y2

f

y2y1y0

Inner Linearization of Conjugate f

f(y)
F (y)

Subgradients in outer lin. <==> Break points in inner lin.
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Cutting Plane Method for min
x C

f (x) (C polyhedral)2

Given y

i

2 @f (x
i

) for i = 0, . . . , k , form

F

k

(x) = max
˘

f (x0) + y0
0(x − x0), . . . , f (x

k

) + y

k

0(x − x

k

)

and let

¯

x

k+1 2 arg min F

k

(x)
x2C

At each iteration solves LP of large dimension (which is simpler than the
original problem).

x0 x1x2x3

f(x)

xx∗

C

f(x0) + y⇤
0(x − x0)

f(x1) + y⇤
1(x − x1)
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Simplicial Decomposition for min
x2C

f (x) (f smooth, C polyhedral)

At the typical iteration we have x

k

and X

k

= {x0, x̃1, . . . , x̃

k

}, where
x̃1, . . . , x̃

k

are extreme points of C.
Solve LP of large dimension: Generate

x̃

k+1 2 arg min{rf (x
k

)0(x − x

k

)
x2C

}

Solve NLP of small dimension: Set X

k+1 = {x̃

k+1} [ X

k

, and generate
x

k+1 as
x

k+1 2 arg min f (x)
x2conv(X

k+1)

Level sets of f

C

x̃1

x̃2

x̃3

x̃4

x0

∇f(x0)

∇f(x1)

∇f(x2)

∇f(x3)

x1

x2

x3

x4 = x∗

Finite convergence if C is a bounded polyhedron.
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Comparison: Cutting Plane - Simplicial Decomposition

Cutting plane aims to use LP with same dimension and smaller number
of constraints.

Most useful when problem has small dimension and:
There are many linear constraints, or
The cost function is nonlinear and linear versions of the problem are much
simpler

Simplicial decomposition aims to use NLP over a simplex of small
dimension [i.e., conv(X

k

)].
Most useful when problem has large dimension and:

Cost is nonlinear, and
Solving linear versions of the (large-dimensional) problem is much simpler
(possibly due to decomposition)

The two methods appear very different, with unclear connection, despite
the general conjugacy relation between outer and inner linearization.

We will see that they are special cases of two methods that are dual
(and mathematically equivalent) to each other.
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Extended Monotropic Programming (EMP)

m

min f

i

(x
i

)
(x1,...,x

m

)2S

i=1

where f <n

i

i

:

X

7! (−1,1] is a closed proper convex, S is subspace.
Monotropic programming (Rockafellar, Minty), where f

i

: scalar functions.
Single commodity network flow (S: circulation subspace of a graph).
Block separable problems with linear constraints.
Fenchel duality framework: Let m = 2 and S

n= (x , x) | x 2 < . Then
the problem

min f1(x1) + f2(x2)

˘ ¯

(x1,x2)2S

can be written in the Fenchel format

min f1(x) + f2(x)
x2<n

Conic programs (second order, semidefinite - special case of Fenchel).
Sum of functions (e.g., machine learning): For S =

˘
(x , . . . , x

n) | x 2 <
m

min f

i

(x)

¯

x2<n

=

X

i 1
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Dual EMP

Derivation: Introduce z

i

2 <n

i and convert EMP to an equivalent form
m m

min
X

f

i

(x
i

) f

i

( )
(x ,...,x )2S

⌘ min z

i

z x1 m i

=
i

, i=1,...,m,
i=1 (x x S

i=11,...,
m

)2

X

Assign multiplier y

i

2 <n

i to constraint z

i

= x

i

, and form the Lagrangian
m

L(x , z, y) =
X

f

i

(z
i

) + y

i

0(x
i

z

i=1

−
i

)

where y = (y1, . . . , y

m

).
The dual problem is to maximize the dual function

q(y) = inf L(x , z, y)
(x1,...,x

m

)2S, z

i

2<n

i

Exploiting the separability of L(x , z, y) and changing sign to convert
maximization to minimization, we obtain the dual EMP in symmetric form

m

min f

?
i

(y
i

)
(y1,...,y

m

)2S

?

X

i=1

where f

? is the convex conjugate function of f .
i
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Optimality Conditions

There are powerful conditions for strong duality q

⇤ = f

⇤ (generalizing
classical monotropic programming results):

Vector Sum Condition for Strong Duality: Assume that for all feasible x , the
set

S

? + @✏(f1 + · · · + f

m

)(x)

is closed for all ✏ > 0. Then q

⇤ = f

⇤.
Special Case: Assume each f

i

is finite, or is polyhedral, or is essentially
one-dimensional, or is domain one-dimensional. Then q

⇤ = f

⇤.
By considering the dual EMP, “finite" may be replaced by “co-finite" in the
above statement.

Optimality conditions, assuming −1 < q

⇤ = f

⇤ < 1:
(x⇤, y

⇤) is an optimal primal and dual solution pair if and only if

x

⇤ 2 S, y

⇤ 2 S

?, y

i

⇤ 2 @f

i

(x
i

⇤), i = 1, . . . , m

Symmetric conditions involving the dual EMP:

x

⇤
S, y

⇤
S

?, x

i

⇤ @f

?(
i

y

i

⇤), i = 1, . . . , m2 2 2
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Outer Linearization of a Convex Function: Definition

Let f : <n 7! (−1,1] be closed proper convex.

Given a finite set Y ⇢ dom(f ?), we define the outer linearization of f

f

Y

(x) = max
˘

f (x
y

) + y

0(x
y2Y

− x

y

)

where x

y

is such that y

¯

2 @f (x
y

).

xxy

f(xy) + y′(x − xy)

f
Y

f
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Inner Linearization of a Convex Function: Definition

Let f : <n 7! (−1,1] be closed proper convex.
Given a finite set X ⇢ dom(f ), we define the inner linearization of f as
t̆he function f̄

X

whose epigraph is the convex hull of the rays
(x , w) | w ≥ f (x), x 2 X

¯
:

(
min P

x X

↵
x

x=z,

P
x X

↵
x

f (z) if z conv(X )
f̄

X

(z) =
P 2

1 0 x X

x2X

↵
x

= , ↵
x

2
≥ , 2

2

1 otherwise

f
fXf

X
x

X
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Polyhedral Approximation Algorithm

Let f

i

: <n

i 7! (−1,1] be closed proper convex, with conjugates f

?
i

.
Consider the EMP

m

min
(x1,...,x

m

)2S

X
f

i

(x
i

)
i=1

Introduce a fixed partition of the index set:

{1 m} I [ I [ Ī I Outer indices ¯, . . . , = , : , I : Inner indices

Typical Iteration: We have finite subsets Y

i

⇢ dom(f ?
i

) for each i

¯
2 I,

and X

i

⇢ dom(f
i

) for each i 2 I.

Find primal-dual optimal pair x̂ = (x̂1, . . . , x̂

m

), and ŷ = (ŷ1, . . . , ŷ

m

) of
the approximate EMP

min
X

f

¯
i

(x
i

) + f

i,Y (x
i

) + f

i,X (x
i

(x1,...,x i

i

)
m

)2S

i2I

X

i2I

X

i2Ī

Enlarge Y

i

and X

i

by differentiation:
For each i 2 I, add ỹ

i

to Y

i

where ỹ

i

2 @f

i

(x̂
i

)
For each i 2 Ī, add x̃

i

to X

i

where x̃

i

2 @f

?(ˆ
i

y

i

).
20



Polyhedral Approximation Extended Monotropic Programming Special Cases

Enlargement Step for i th Component Function

Outer: For each i I, add ỹ

i

to Y

i

where ỹ

i

@f

i

(x̂
i

).2 2

New Slope ỹi

Slope ŷi

x̂i

fi(xi)

f
i,Yi

(xi)

Inner: For each i 2 Ī, add x̃

i

to X

i

where x̃

i

2 @f

?
i

(ŷ
i

).

Slope ŷi

Slope ŷi

fi(xi)

x̂i

f i,Xi
(xi)

New Point x̃i
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Mathematically Equivalent Dual Algorithm

Instead of solving the primal approximate EMP

min
X

f

¯
i

(x
i

) +
X

f

i,Y (
i

) +
X

i

x

X
f

i,
i

(x
i

)
(x1,...,x

m

)2S

i2I i2I

i2Ī

we may solve its dual

min
X

f

?
i

(y
i

) +
X

f

?
i,Y (

i

y

i

) +
X

f̄

?
i,X

i

(x
i

)
(y1,...,y

m

)2S

?
i2I i2I

i2Ī

where f

? ?
i Y

i

and f̄, i,X
i

are the conjugates of f

¯
i,Y i

i

and f ,X
i

.

Note that f

?
i,Y

i

is an inner linearization, and f̄

?
i,X

i

is an outer linearization
(roles of inner/outer have been reversed).

The choice of primal or dual is a matter of computational convenience,
but does not affect the primal-dual sequences produced.
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Comments on Polyhedral Approximation Algorithm

In some cases we may use an algorithm that solves simultaneously the
primal and the dual.

Example: Monotropic programming, where x

i

is one-dimensional.
Special case: Convex separable network flow, where x

i

is the
one-dimensional flow of a directed arc of a graph, S is the circulation
subspace of the graph.

In other cases, it may be preferable to focus on solution of either the
primal or the dual approximate EMP.
After solving the primal, the refinement of the approximation (ỹ

i

for i

˜ ¯
2 I,

and x

i

for i I) may be found later by differentiation and/or some special
procedure/optimization.

2

This may be easy, e.g., in the cutting plane method, or
This may be nontrivial, e.g., in the simplicial decomposition method.

Subgradient duality [y @f (x) iff x @f

?(y)] may be useful.2 2
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Cutting Plane Method for min
x2C

f (x)

EMP equivalent: min
x1=x2 f (x1) + δ(x2 | C), where δ(x2 | C) is the

indicator function of C.
Classical cutting plane algorithm: Outer linearize f only, and solve the
primal approximate EMP. It has the form

min f

Y

(x)
x2C

where Y is the set of subgradients of f obtained so far. If x̂ is the
solution, add to Y a subgradient ỹ 2 @f (x̂).

x0

f(x)

xx∗

C

x̂1x̂2x̂3

f(x0) + ỹ′
0(x − x0)

f(x̂1) + ỹ′
1(x − x̂1)
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Simplicial Decomposition Method for min
x2C

f (x)

EMP equivalent: min
x1=x2 f (x1) + δ(x2 | C), where δ(x2 | C) is the

indicator function of C.

Generalized Simplicial Decomposition: Inner linearize C only, and solve
the primal approximate EMP. In has the form

min f (x)
x2C̄

X

where C̄

X

is an inner approximation to C.

Assume that x̂ is the solution of the approximate EMP.
Dual approximate EMP solutions:

(ŷ ,−ŷ) | ŷ 2 @f (x̂), −ŷ 2 (normal cone of C̄

X

at x̂)

In the classical

˘

case where f is differentiable, ŷ = rf (x̂).

¯

Add to X a point x̃ such that −ŷ 2 @δ(x̃ | C), or

x̃ arg min ŷ

0
x2

x2C
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Illustration of Simplicial Decomposition for min
x2C

f (x)

Level sets of f

C

Level sets of f

x0

conv(Xk)

x∗

C

ŷk+1

ŷk

Dierentiable f Nondierentiable f

x̃k+1

x̂k+1

x̂k

x̃1

x̃2

x̃3

x̃4

x̂1

x̂2

x̂3

x̂4 = x∗

∇f(x̂1)

∇f(x̂2)

x0

∇f(x0)

∇f(x̂3)
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Dual Views for min
x2<n

f1(x) + f2(x)

Inner linearize f2

�  

> 0 x

Const. − f1(x)

f2(x)

x̂

Slope: − ŷ

f̄2,X2(x)

x̃

Dual view: Outer linearize f

?
2

− gk Constant − f
1 ()

f
2 (−)

F
2,k(−)

Slope: x̃i, i ≤ k
Slope: x̃i, i ≤ k

Slope: x̃k+1
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Convergence - Polyhedral Case

Assume that
All outer linearized functions f

i

are finite polyhedral
All inner linearized functions f

i

are co-finite polyhedral
The vectors ỹ

i

and x̃

i

added to the polyhedral approximations are element
of the finite representations of the corresponding f

i

Finite convergence: The algorithm terminates with an optimal
primal-dual pair.

Proof sketch: At each iteration two possibilities:
Either (x̂ , ŷ) is an optimal primal-dual pair for the original problem
Or the approximation of one of the f

i

, i 2 I [ Ī, will be refined/improved

By assumption there can be only a finite number of refinements.

s
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Convergence - Nonpolyhedral Case

Convergence, pure outer linearization (̄I: Empty). Assume that the
sequence {ỹ

k

i

} is bounded for every i 2 I. Then every limit point of {x̂

k}
is primal optimal.

Proof sketch: For all k , `  k − 1, and x 2 S, we have

X
f

k

i

(x̂
i

)+
X ` m

f −x

`
i

(x̂`
i

)+(xk

î î

)0ỹ`
i

´


X
f

k k

i

(x̂
i

)+
X

f

k 1(
i Y

x̂

i

)
, −

i

i2/I

i2I

i2/

 f

i

(x
i

)
I

i2I

X

i=1

Let {x̂

k}K ! x̄ and take limit as ` ! 1, k 2 K, ` 2 K, ` < k .

Exchanging roles of primal and dual, we obtain a convergence result for
pure inner linearization case.

Convergence, pure inner linearization (I: Empty). Assume that the
sequence {x̃

k

i

} is bounded for every i 2 Ī. Then every limit point of {ŷ

k}
is dual optimal.

General mixed case: Convergence proof is more complicated (see the
Bertsekas and Yu paper).
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Concluding Remarks

A unifying framework for polyhedral approximations based on EMP.

Dual and symmetric roles for outer and inner approximations.

There is option to solve the approximation using a primal method or a
dual mathematical equivalent - whichever is more convenient/efficient.

Several classical methods and some new methods are special cases.
Proximal/bundle-like versions:

Convex proximal terms can be easily incorporated for stabilization and for
improvement of rate of convergence.
Outer/inner approximations can be carried from one proximal iteration to the
next.
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