LECTURE 17

LECTURE OUTLINE

e Review of cutting plane method
e Simplicial decomposition

e Duality between cutting plane and simplicial
decomposition

All figures are courtesy of Athena Scientific, and are used with permission.



CUTTING PLANE METHOD

e Start with any xg € X. For k > 0, set

Tr11 € argmin Fy(x),
reX

where
Fi(x) = max{f(a:o)+(x—:1:o)/go, e f(xk)+(x—wk)/gk}

and ¢g; is a subgradient of f at x;.

e We have Fi(x) < f(x) for all z, and Fj(zgs1)
increases monotonically with k.

e These imply that all limit points of x; are op-
timal.



BASIC SIMPLICIAL DECOMPOSITION

e Minimize a differentiable convex f : ™ — R
over bounded polyhedral constraint set X.

e Approximate X with a simpler inner approx-
imating polyhedral set.

e Construct a more refined problem by solving a
linear minimization over the original constraint.

e The method is appealing under two conditions:

— Minimizing f over the convex hull of a rela-
tive small number of extreme points is much
simpler than minimizing f over X.

— Minimizing a linear function over X is much
simpler than minimizing f over X.
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SIMPLICIAL DECOMPOSITION METHOD

e Given current iterate x;, and finite set X, C X
(initially zo € X, Xo = {x0}).

e Let Tr1 be extreme point of X that solves

minimize V f(zr) (z — x)

subject to r € X

and add Zg41 to Xg: Xgiq = {:ikH} U Xg.

e (Generate xp11 as optimal solution of

minimize f(x)

subject to x € conv(Xg41).
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CONVERGENCE

e There are two possibilities for Ty 1:

(a) We have

0 < Vf(zr) (Th+1—wx) = min V f(zx) (z—2)

Then xx minimizes f over X (satisfies the
optimality condition)

(b) We have

0> Vf(re) (Tk+1 — k)

Then Tg41 ¢ conv(Xy), since xx minimizes
f over x € conv(Xg), so that

Vf(zg) (x —xr) >0, V x € conv(Xyg)

e Case (b) cannot occur an infinite number of
times (Tx+1 ¢ X and X has finitely many ex-
treme points), so case (a) must eventually occur.

e The method will find a minimizer of f over X
in a finite number of iterations.



COMMENTS ON SIMPLICIAL DECOMP.

e Important specialized applications

e Variant to enhance efficiency. Discard some of
the extreme points that seem unlikely to “partici-
pate” in the optimal solution, i.e., all £ such that

V (k1) (T — 2p41) >0

e Variant to remove the boundedness assumption
on X (impose artificial constraints)

e Extension to X nonpolyhedral (method remains
unchanged, but convergence proof is more com-
plex)

e Extension to f nondifferentiable (requires use
of subgradients in place of gradients, and more
sophistication)

e Duality relation with cutting plane meth-

ods

e We will view cutting plane and simplicial de-
composition as special cases of two polyhedral ap-
proximation methods that are dual to each other



OUTER LINEARIZATION OF FNS
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Outer Linearization of f Inner Linearization of Conjugate f*

e Outer linearization of closed proper convex func-
tion f : R" — (—o0, 00

e Defined by set of “slopes” {yi,...,y¢}, where
y; € Of(x;) for some z;

e Given by

F(x) :]E??ie{f(zj)‘|‘(37—37j)/yj}, r € Rn

or equivalently

F(a) = max (v~ f+(u)

[this follows using @%y; = f(z;) + f*(y;), which is
implied by y; € df(z;) — the Conjugate Subgra-
dient Theorem]
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INNER LINEARIZATION OF FNS
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Outer Linearization of f Inner Linearization of Conjugate f*

e Consider conjugate F'* of outer linearization F
e After calculation using the formula
F(z) = max {yo — f+(u))

F'* is a piecewise linear approximation of f* de-
fined by “break points” at yi,...,ys

e We have
dom(F*) = conv({y1,...,ye}),
with values at y1,...,ys equal to the correspond-

ing values of f*

e Epigraph of F'* is the convex hull of the union of
the vertical halflines corresponding to 1, ..., ys:

epi(F*) = COHV( Uj=1,...¢ {(yjaw) | [*(y5) < w})



GENERALIZED SIMPLICIAL DECOMPOSITION

e Consider minimization of f(x) + c(x), over x €
R, where f and c are closed proper convex

e (Case where f is differentiable

Const. —f(z),

0 Tk Thtl Tht1 T

e Given (C': inner linearization of ¢, obtain

T € arg xrgg%gl{f(a:) + Cr(z)}

e Obtain xx1 such that
—Vf(zr) € 0c(Tryr),

and form Xgy1 = X U {5?]44_1}



NONDIFFERENTIABLE CASE

e Given C%: inner linearization of ¢, obtain

zx € arg min {f(x) + Cy(x)}

e Obtain a subgradient g € 0f(xx) such that

—Jr € 6Ck(37k)

e Obtain Zx1 such that

— gk € 0c(Th1),

and form Xgi11 = Xp U{Zxs+1}

e Example: cis the indicator function of a poly-
hedral set




DUAL CUTTING PLANE IMPLEMENTATION
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e Primal and dual Fenchel pair

IR

F (), min ffO)+ (D)

e Primal and dual approximations

min fi(z) + Fo () min f7(A) + F5  (=A)
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o F5p and F3, are inner and outer approxima-
tions of fo and f3

e 1,11 and g; are solutions of the primal or the
dual approximating problem (and corresponding
subgradients)
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