
LECTURE 16

LECTURE OUTLINE

• Approximate subgradient methods

• Approximation methods

• Cutting plane methods

All figures are courtesy of Athena Scientific, and are used with permission.
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APPROXIMATE SUBGRADIENT METHODS

• Consider minimization of

f(x) = sup φ(x, z)
z⌦Z

where Z ⌦ �m and φ(·, z) is convex for all z ⌘ Z
(dual minimization is a special case).

• To compute subgradients of f at x ⌘ dom(f),
we find zx ⌘ Z attaining the supremum above.
Then

gx ⌘ ◆φ(x, zx) ✏ gx ⌘ ◆f(x)

• Potential di⇥culty: For subgradient method,
we need to solve exactly the above maximization
over z ⌘ Z.

• We consider methods that use “approximate”
subgradients that can be computed more easily.
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⇧-SUBDIFFERENTIAL

• Fot a proper convex f : �n → (−⇣,⇣] and
⇧ > 0, we say that a vector g is an ⇧-subgradient
of f at a point x ⌘ dom(f) if

f(z) ≥ f(x) + (z − x)�g − ⇧,  z ⌘ �n

◆

0

f(z)

(g, 1)

z

�
x, f(x) 

⇥

• The ⇧-subdifferential ◆⇤f(x) is the set of all ⇧-
subgradients of f at x. By convention, ◆⇤f(x) = Ø
for x ⌘/ dom(f).

• We have ⌫⇤⌥0◆⇤f(x) = ◆f(x) and

◆⇤1f(x) ⌦ ◆⇤2f(x) if 0 < ⇧1 < ⇧2
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CALCULATION OF AN ⇧-SUBGRADIENT

• Consider minimization of

f(x) = sup φ(x, z), (1)
z⌦Z

where x
n

⌘ �n, z ⌘ �m, Z is a subset of �m, and
φ : � ⇤ �m → (−⇣,⇣] is a function such that
φ(·, z) is convex and closed for each z ⌘ Z.

• How to calculate ⇧-subgradient at x ⌘ dom(f)?

• Let zx ⌘ Z attain the supremum within ⇧ ≥ 0
in Eq. (1), and let gx be some subgradient of the
convex function φ(·, zx).

• For all y ⌘ �n, using the subgradient inequality,

f(y) = sup φ(y, z)
z⌦Z

≥ φ(y, zx)

≥ φ(x, zx) + gx
� (y − x) ≥ f(x)− ⇧+ gx

� (y − x)

i.e., gx is an ⇧-subgradient of f at x, so

φ(x, zx) ≥ sup φ(x, z)
z⌦Z

− ⇧ and gx ⌘ ◆φ(x, zx)

✏ gx ⌘ ◆⇤f(x)

◆
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⇧-SUBGRADIENT METHOD

• Uses an ⇧-subgradient in place of a subgradient.

• Problem: Minimize convex f : �n → � over a
closed convex set X.

• Method:

xk+1 = PX(xk − αkgk)

where gk is an ⇧k-subgradient of f at xk, αk is a
positive stepsize, and PX(·) denotes projection on
X.

• Can be viewed as subgradient method with “er-
rors”.

◆
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CONVERGENCE ANALYSIS

• Basic inequality: If xk is the ⇧-subgradient
method sequence, for all

{
y

}
⌘ X and k ≥ 0

⇠xk+1

−y⇠2 ⌃ ⇠xk−y⇠2−2αk

�
f(xk)−f(y)−⇧k +α2

k⇠gk⇠2

• Replicate the entire convergence analysis

⇥

for
subgradient methods, but carry along the ⇧k terms.

• Example: Constant αk ⌃ α, constant ⇧k ⌃ ⇧.
Assume �gk� ⌥ c for all k. For any optimal x⇤,

�xk+1−x⇤�2 ⌥ �xk−x⇤�2−2α
�
f(xk)−f⇤−⇧

so

⇥
+α2c2,

the distance to x⇤ decreases if

2 x
0 α <

�
f( k)− f⇤ ⇧

<
c2

−
⇥

or equivalently, if xk is outside the level set

�
x
⇧⇧ 2

⇧
αc

f(x) ⌥ f⇤ + ⇧+
2

�

• Example: If αk → 0,
�

k αk →⇣, and ⇧k → ⇧,
we get convergence to the ⇧-optimal set.
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INCREMENTAL SUBGRADIENT METHODS

• Consider minimization of sum

m

f(x) = fi(x)
i=1

• Often arises in duality

⌧

contexts with m: very
large (e.g., separable problems).

• Incremental method moves x along a sub-
gradient gi of a component function fi NOT
the (expensive) subgradient of f , which is

�
gii .

• View an iteration as a cycle of m subiterations,
one for each component fi.

• Let xk be obtained after k cycles. To obtain
xk+1, do one more cycle: Start with ψ0 = xk, and
set xk+1 = ψm, after the m steps

ψi = PX(ψi 1 − αkgi), i = 1, . . . ,m−

with gi being a subgradient of fi at ψi−1.

• Motivation is faster convergence. A cycle
can make much more progress than a subgradient
iteration with essentially the same computation.
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CONNECTION WITH ⇧-SUBGRADIENTS

• Neighborhood property: If x and x are
“near” each other, then subgradients at x can be
viewed as ⇧-subgradients at x, with ⇧ “small.”

• If g ⌘ ◆f(x), we have for all z ⌘ �n,

f(z) ≥ f(x) + g�(z − x)

≥ f(x) + g�(z − x) + f(x)− f(x) + g�(x− x)

≥ f(x) + g�(z − x)− ⇧,

where ⇧ = |f(x) − f(x)| + �g� · �x − x�. Thus,
g ⌘ ◆⇤f(x), with ⇧: small when x is near x.

• The incremental subgradient iter. is an ⇧-subgradient
iter. with ⇧ = ⇧1 + · · ·+ ⇧m, where ⇧i is the “error”
in ith step in the cycle (⇧i: Proportional to αk).

• Use

◆⇤1f1(x) + · · · + ◆⇤mfm(x) ⌦ ◆⇤f(x),

where ⇧ = ⇧1 + · · · + ⇧m, to appro� ximate the ⇧-
subdifferential of the sum f = m

i=1 fi.

• Convergence to optimal if αk → 0,
�

k αk →⇣.
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APPROXIMATION APPROACHES

• Approximation methods replace the original
problem with an approximate problem.

• The approximation may be iteratively refined,
for convergence to an exact optimum.

• A partial list of methods:

− Cutting plane/outer approximation.

− Simplicial decomposition/inner approxima-
tion.

− Proximal methods (including Augmented La-
grangian methods for constrained minimiza-
tion).

− Interior point methods.

• A partial list of combination of methods:

− Combined inner-outer approximation.

− Bundle methods (proximal-cutting plane).

− Combined proximal-subgradient (incremen-
tal option).

9



SUBGRADIENTS-OUTER APPROXIMATION

• Consider minimization of a convex function f :
�n → �, over a closed convex set X.

• We assume that at each x ⌘ X, a subgradient
g of f can be computed.

• We have

f(z) ≥ f(x) + g�(z − x),  z ⌘ �n,

so each subgradient defines a plane (a linear func-
tion) that approximates f from below.

• The idea of the outer approximation/cutting
plane approach is to build an ever more accurate
approximation of f using such planes.

◆

x0 x1x2x3

f(x)

X

x

f(x0) + (x  x0)⇥g0

f(x1) + (x  x1)⇥g1

x∗
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CUTTING PLANE METHOD

• Start with any x0 ⌘ X. For k ≥ 0, set

xk+1 ⌘ arg min Fk(x),
x⌦X

where

Fk(x) = max f(x
0

)+(x−x
0

)⇧g
0

, . . . , f(xk)+(x−xk)⇧gk

and gi is a

⇤

subgradient of f at xi.

⌅

x0 x1x2x3

f(x)

X

x

f(x0) + (x  x0)⇥g0

f(x1) + (x  x1)⇥g1

x∗

• Note that Fk(x) ⌥ f(x) for all x, and that
Fk(xk+1) increases monotonically with k. These
imply that all limit points of xk are optimal.

Proof: If xk → x then Fk(xk) → f(x), [otherwise
there would exist a hyperplane strictly separating
epi(f) and (x, limk Fk(x⌃ k))]. This implies that
f(x) limk F⌃ k(x) f(x) for all x. Q.E.D.⌥ ⌥
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CONVERGENCE AND TERMINATION

• We have for all k

Fk(xk+1) ⌥ f⇤ ⌥ min f(xi)
i⌅k

• Termination when mini⌅k f(xi)−Fk(xk+1) comes
to within some small tolerance.

• For f polyhedral, we have finite termination
with an exactly optimal solution.

x0 x1x2x3

f(x)

X

x

f(x0) + (x  x0)⇥g0

f(x1) + (x  x1)⇥g1

x∗

• Instability problem: The method can make
large moves that deteriorate the value of f .

• Starting from the exact minimum it typically
moves away from that minimum.
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VARIANTS

• Variant I: Simultaneously with f , construct
polyhedral approximations to X.

• Variant II: Central cutting plane methods

x0 x1x2

f(x)

X

x

f(x0) + (x  x0)⇥g0

f(x1) + (x  x1)⇥g1

x∗

f̃2

Central pair (x2, w2)

Set S1

F1(x)
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