LECTURE 16

LECTURE OUTLINE

e Approximate subgradient methods
e Approximation methods

e Cutting plane methods

All figures are courtesy of Athena Scientific, and are used with permission.
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APPROXIMATE SUBGRADIENT METHODS

e (Consider minimization of

f(:E) = Sup ¢(CE7 Z)

ze/

where Z C ™ and ¢(-, z) is convex for all z € Z
(dual minimization is a special case).

e To compute subgradients of f at x € dom(f),

we find z, € Z attaining the supremum above.
Then

gz € 0P(x, 2z) = gz € 0f(x)

e Potential difficulty: For subgradient method,
we need to solve exactly the above maximization
over z € Z.

e We consider methods that use “approximate”
subgradients that can be computed more easily.



e-SUBDIFFERENTIAL

e Fot a proper convex f : R" — (—o0, 0| and
e > 0, we say that a vector g is an e-subgradient
of f at a point x € dom(f) if

f(z2) > f(zx)+ (z —x)'g—ck, V zeRn

f(=) A

>
6/\(:1:, (z) —¢)

V o

e The e-subdifferential O f(x) is the set of all -
subgradients of f at x. By convention, 0. f(x) = @
for ¢ dom(f).

e We have N¢ o0 f(z) = 0f(x) and

O, f(x) C O, f(x) f0<e <e



CALCULATION OF AN «SUBGRADIENT

e (Consider minimization of

f(z) = sup ¢(z, 2), (1)

z€/

where x € R, z € R®™, Z is a subset of ™, and
¢ : /" X R — (—o0, 0] is a function such that
¢(+, z) is convex and closed for each z € Z.

e How to calculate e-subgradient at « € dom(f)?

o Let z, € Z attain the supremum within ¢ > 0
in Eq. (1), and let g, be some subgradient of the
convex function ¢(-, zz).

e For all y € ™, using the subgradient inequality,

fly) = Sup o(y,2) > ¢y, 2z)
> ¢z, 22) + gh(y —x) > f(z) — e+ gh(y — )

i.e., g i1s an e-subgradient of f at x, so

¢(xaz$) Z Sup gb(CU,Z) — € and 9x < a§b(CIZ,Zg;)
ze€Z

= gz € O f ()



e-SUBGRADIENT METHOD

e Uses an e-subgradient in place of a subgradient.

e Problem: Minimize convex f : R — R over a
closed convex set X.

e Method:

Tr+1 = Px(Tr — argr)

where g; is an €x-subgradient of f at xp, ai is a

positive stepsize, and Px(-) denotes projection on
X.

e Can be viewed as subgradient method with “er-
rors” .



CONVERGENCE ANALYSIS
e Basic inequality: If {x;} is the e-subgradient
method sequence, for all y € X and £ > 0

|zr1=ylI* < llwe—yll* =20 (f(zr)— f(y)—ex) +oillge

e Replicate the entire convergence analysis for
subgradient methods, but carry along the €, terms.

e Example: Constant ap = o, constant €, = e.
Assume ||gx|| < ¢ for all k. For any optimal x*,

lzgr1—a)1? < |lep—a*||2=2a(f (zr)— f*—e) +ac?,

so the distance to x* decreases if

2(f(zx) — f*—¢)

c2

D<a<

or equivalently, if x; is outside the level set

{x ‘ f(x)éf*+e+a7c2}

e Example: Ifa, — 0, ), o — 00, and €, — e,
we get convergence to the e-optimal set.



INCREMENTAL SUBGRADIENT METHODS

e (Consider minimization of sum

f@) =" fila

e Often arises in duality contexts with m: very
large (e.g., separable problems).

e Incremental method moves x along a sub-
gradient ¢; of a component function f; NOT
the (expensive) subgradient of f, which is » . g.

e View an iteration as a cycle of m subiterations,
one for each component f;.

e Let x; be obtained after k cycles. To obtain
T 1, do one more cycle: Start with ¢g = xy, and
set Tx11 = Ym, after the m steps

Vi = Px(Yi—1 — axgi), i=1,...,m

with g; being a subgradient of f; at ;1.

e Motivation is faster convergence. A cycle
can make much more progress than a subgradient
iteration with essentially the same computation.



CONNECTION WITH «SUBGRADIENTS

e Neighborhood property: If x and T are
“near” each other, then subgradients at T can be
viewed as e-subgradients at x, with € “small.”

o If g € 0f(T), we have for all z € R,

f(z) > f(T) + 9 (2 —T)
> f(x) +g'(z —x)+ f(T) — f(x) +g'(z —T)
fl@) +4g' (2 —x) —¢

'V

where ¢ = |f(Z) — f(z)| + |lg]l - [[z — . Thus,
g € O.f(x), with e: small when T is near =x.

e The incremental subgradient iter. is an e-subgradient

iter. with e = €1 4+ - - - + €., Where ¢; is the “error”
in ith step in the cycle (¢;: Proportional to ay).

e Use

Ocy f1(x) + -+ + Oc,, frm(z) C Oc f(2),

where € = €1 + -+ + €, to approximate the e-
subdifferential of the sum f =" fi.

e Convergence to optimal if a, — 0, >, ar — oc.



APPROXIMATION APPROACHES

e Approximation methods replace the original
problem with an approximate problem.

e The approximation may be iteratively refined,
for convergence to an exact optimum.
e A partial list of methods:

— Cutting plane/outer approximation.

— Simplicial decomposition/inner approxima-
tion.

— Proximal methods (including Augmented La-
grangian methods for constrained minimiza-
tion).

— Interior point methods.

e A partial list of combination of methods:
— Combined inner-outer approximation.
— Bundle methods (proximal-cutting plane).

— Combined proximal-subgradient (incremen-
tal option).



SUBGRADIENTS-OUTER APPROXIMATION

e (Consider minimization of a convex function f :
R — R, over a closed convex set X.

e We assume that at each x € X, a subgradient
g of f can be computed.

e We have
f(z) > f(x)+¢'(z — x), V z e Rr,
so each subgradient defines a plane (a linear func-

tion) that approximates f from below.

e The idea of the outer approximation/cutting
plane approach is to build an ever more accurate
approximation of f using such planes.
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CUTTING PLANE METHOD

e Start with any xg € X. For k > 0, set

Tr11 € argmin Fy(x),
reX

where
Fi(x) = max{f(a:o)+(x—:1:o)/go, e f(xk)+(x—wk)/gk}

and ¢g; is a subgradient of f at x;.

e Note that Fi(x) < f(x) for all x, and that
Fj.(xky1) increases monotonically with k. These
imply that all limit points of z; are optimal.

Proof: If x; — T then Fi(xx) — f(T), lotherwise
there would exist a hyperplane strictly separating
epi(f) and (7, limg— o0 Fx(xr))]. This implies that
f(@) <limg_oo Fi(x) < f(x) for all z. Q.E.D.
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CONVERGENCE AND TERMINATION

e We have for all k
Fi(zy41) < f* < min f(z;)

e Termination when min;<x f(x;)—Fk(Tr+1) comes
to within some small tolerance.

e For f polyhedral, we have finite termination
with an exactly optimal solution.

/:/f(:cl) +(z —71)'g1

|
|
|
|
|
: __+f(=o) + (z — z0)’go
: |
| ! . | »
o X3 T* X2 ' Z1 T
pe >

X

e Instability problem: The method can make
large moves that deteriorate the value of f.

e Starting from the exact minimum it typically
moves away from that minimum.
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VARIANTS

e Variant I: Simultaneously with f, construct
polyhedral approximations to X.

e Variant II: Central cutting plane methods

f f(,l) e
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