LECTURE 15

LECTURE OUTLINE

e Subgradient methods
e (alculation of subgradients
e (Convergence
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e Steepest descent at a point requires knowledge
of the entire subdifferential at a point

e (Convergence failure of steepest descent

e Subgradient methods abandon the idea of com-
puting the full subdifferential to effect cost func-
tion descent ...

e Move instead along the direction of a single
arbitrary subgradient

All figures are courtesy of Athena Scientific, and are used with permission.
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SINGLE SUBGRADIENT CALCULATION

e Key special case: Minimax

f(il?) = Sup ¢(CE7 Z)

ze/

where Z C R™ and ¢(-, z) is convex for all z € Z.

e For fixed x € dom(f), assume that z, € Z
attains the supremum above. Then

gz € 09(T, 25) = gz € 0f(x)

e Proof: From subgradient inequality, for all y,

fly) = Sup (Y, 2) > (Y, 22) > (2, 22) + g2 (y — @)
= f(z) + 9.(y — x)

e Special case: Dual problem of min ¢ x, g(z)<o f(2):

max q(u) = inf Lz, u) = inf {f(z) +wg(2)}

or min,>o F'(u), where F'(—u) = —q(u).



ALGORITHMS: SUBGRADIENT METHOD

e Problem: Minimize convex function f : " —
R over a closed convex set X.

e Subgradient method:

Trp+1 = Px(Tr — orgr),

where g; is any subgradient of f at xp, ap is a
positive stepsize, and Px(-) is projection on X.

Level sets of f

Tk — OkgEk



KEY PROPERTY OF SUBGRADIENT METHOD

e For a small enough stepsize oy, it reduces the
Fuclidean distance to the optimum.

Level sets of f X
L
— \

—

< 902

Tre1 = Px(xr — argr)

e Proposition: Let {x;} be generated by the
subgradient method. Then, for all y € X and k:

lzr1—yll* < ek —yll* =20 (f(zr) = f(y)) +oillge
and if f(y) < f(xk),
|zev1 —yll < [lzx —

for all o such that

2(f(xr) — f(y)).

0 <o <
gk |2
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PROOF

e Proof of nonexpansive property
|Px(x) = Px ()| < [le —yll,  Va,yeRm

Use the projection theorem to write

(z — Px(z)) (z — Px(z)) <0, VzeX

from which (Px(y) — PX(:U))/(:E — Px(z)) < 0.

Similarly, (Px(z) — Px(y)) (y — Px(y)) < 0.
Adding and using the Schwarz inequality,

|Px@) — Px(@)|” < (Px(») — Px (@) (v — =)
< ||Px () — Px(@)]| - lly — =
Q.E.D.

e Proof of proposition: Since projection is non-
expansive, we obtain for all y € X and k,

|zkt1 — yl|2 = || Px (zk — cangr) — yH2
<||zr — argr — y|?
zr — yl|? — 2akg;, (zr — y) + @il gr|?
< |lzx =yl = 20k (f(xx) = f(y)) + Zllgl?,

where the last inequality follows from the subgra-
dient inequality. Q.E.D.




CONVERGENCE MECHANISM

e Assume constant stepsize: ap = «

o If ||gx|| < ¢ for some constant ¢ and all k,
i1~ 2 < llew—a*|2—2a(f(@x) ~ f (@) +a2e?
so the distance to the optimum decreases if

2(f(xr) — f(x*))

D<a< 5
C

or equivalently, if x; does not belong to the level
set

fo| 1) < s+ %5}

Level set

{z] f(@) < f* +ac*/2}

Optimal solution set



STEPSIZE RULES

e Constant Stepsize: ar = «.
e Diminishing Stepsize: o — 0, ), ar = o0

e Dynamic Stepsize:

f(xr) — fr

c2

L —

where fi is an estimate of f*:

— If f = f*, makes progress at every iteration.
If fr < f* it tends to oscillate around the

optimum. If fr > f* it tends towards the
level set {x | f(z) < fr}.

— fr can be adjusted based on the progress of
the method.

¢ Example of dynamic stepsize rule:

fe = min f(x;) — 0,

0<j<E

and Jx (the “aspiration level of cost reduction”) is
updated according to

o {p(;k if f(xge1) < fr,
ST max {86k, 6} if f(@rs1) > S,

where 6 > 0, 8 < 1, and p > 1 are fixed constants.



SAMPLE CONVERGENCE RESULTS

e Let f = infr>o f(z1), and assume that for some
c, we have

¢ >sup{|lgll | g € Of (1)}
k>0

e Proposition: Assume that oy is fixed at some
positive scalar «. Then:

(a) If f* = —oo, then f = f*.
(b) If f* > —o0, then

ac?

?Sf*+7;.

e Proposition: If oy satisfies

k— o0

oo
lim ap =0, E Qp = 00,
k=0

then f = f*.
e Similar propositions for dynamic stepsize rules.

e Many variants ...
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