
LECTURE 14

LECTURE OUTLINE

• Conic programming

• Semidefinite programming

• Exact penalty functions

• Descent methods for convex/nondifferentiable
optimization

• Steepest descent method

All figures are courtesy of Athena Scientific, and are used with permission.
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LINEAR-CONIC FORMS

min c�x
Ax=b, x⌦C

⇐✏ max b�⌃,
c−A0 ˆ⌅⌦C

min c�x
Ax−b⌦C

⇐✏ max b�⌃,
A0⌅=c, ⌦ ˆ⌅ C

where x ⌘ �n, ⌃ ⌘ �m, c ⌘ �n, b ⌘ �m, A : m⇤n.

• Second order cone programming:

minimize c�x

subject to Aix− bi ⌘ Ci, i = 1, . . . ,m,

where c, bi are vectors, Ai are matrices, bi is a
vector in �ni , and

C n
i : the second order cone of � i

• The cone here is C = C1 ⇤ · · ·⇤ Cm

• The dual problem is

m

maximize
⌧

b�i⌃i

i=1

m

subject to
⌧

A�i⌃i = c, ⌃i

i=1

⌘ Ci, i = 1, . . . ,m,

where ⌃ = (⌃1, . . . ,⌃m).
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EXAMPLE: ROBUST LINEAR PROGRAMMING

minimize c�x

subject to a�jx ⌥ bj ,  (aj , bj) ⌘ Tj , j = 1, . . . , r,

where c ⌘ �n, and Tj is a given subset of �n+1.

• We convert the problem to the equivalent form

minimize c�x

subject to gj(x) ⌥ 0, j = 1, . . . , r,

where gj(x) = sup(aj ,bj) a� x b .⌦Tj
{ j − j}

• For special choice where Tj is an ellipsoid,

Tj =
⇤
(aj +Pjuj , bj +qj

�uj) | �uj� ⌥ 1, uj ⌘ �nj

we can express gj(x)

⌅

⌥ 0 in terms of a SOC:

gj(x) = sup
⇤
(aj + Pjuj)�x

◆uj◆⌅1

− (bj + qj
�uj)

= sup (P

⌅

j
�x− qj)�uj + a�jx− bj ,

◆uj◆⌅1

= �Pj
�x− qj�+ a�jx− bj .

Thus, gj(x) ⌥ 0 iff (Pj
�x−qj , bj−a�jx) ⌘ Cj , where

Cj is the SOC of nj+1.�
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SEMIDEFINITE PROGRAMMING

• Consider the symmetric n ⇤ n matrices. Inner
product < X,Y >= trace(XY ) =

�n
ij iji,j=1 x y .

• Let C be the cone of pos. semidefinite matrices.

• C is self-dual, and its interior is the set of pos-
itive definite matrices.

• Fix symmetric matrices D, A1, . . . , Am, and
vectors b1, . . . , bm, and consider

minimize < D,X >

subject to < Ai, X >= bi, i = 1, . . . ,m, X ⌘ C

• Viewing this as a linear-conic problem (the first
special form), the dual problem (using also self-
duality of C) is

m

maximize
⌧

bi⌃i

i=1

subject to D − (⌃1A1 + · · · + ⌃mAm) ⌘ C

• There is no duality gap if there exists primal
feasible solution that is pos. definite, or there ex-
ists ⌃ such that D− (⌃1A1 + · · ·+ ⌃mAm) is pos.
definite.
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EXAMPLE: MINIMIZE THE MAXIMUM

EIGENVALUE

• Given n⇤n symmetric matrix M(⌃), depending
on a parameter vector ⌃, choose ⌃ to minimize the
maximum eigenvalue of M(⌃).

• We pose this problem as

minimize z

subject to maximum eigenvalue of M(⌃) ⌥ z,

or equivalently

minimize z

subject to zI −M(⌃) ⌘ C,

where I is the n⇤n identity matrix, and C is the
semidefinite cone.

• If M(⌃) is an a⌅ne function of ⌃,

M(⌃) = D + ⌃1M1 + · · · + ⌃mMm,

the problem has the form of the dual semidefi-
nite problem, with the optimization variables be-
ing (z,⌃1, . . . ,⌃m).
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EXAMPLE: LOWER BOUNDS FOR

DISCRETE OPTIMIZATION

• Quadr. problem with quadr. equality constraints

minimize x�Q0x + a�0x + b0

subject to x�Qix + a�ix + bi = 0, i = 1, . . . ,m,

Q0, . . . , Qm: symmetric (not necessarily ≥ 0).

• Can be used for discrete optimization. For ex-
ample an integer constraint xi ⌘ {0, 1} can be
expressed by x2

i − xi = 0.

• The dual function is

q(⌃) = inf
⇤
x�Q(⌃)x + a(⌃)

x⌦�n

�x + b(⌃)
⌅
,

where
⌧m

Q(⌃) = Q0 + ⌃iQi,
i=1

m m

a(⌃) = a0 +
⌧

⌃iai, b(⌃) = b0 + ⌃ibi

i=1

⌧

i=1

• It turns out that the dual problem is equivalent
to a semidefinite program ...
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EXACT PENALTY FUNCTIONS

• We use Fenchel duality to derive an equiva-
lence between a constrained convex optimization
problem, and a penalized problem that is less con-
strained or is entirely unconstrained.

• We consider the problem

minimize f(x)

subject to x ⌘ X, g(x) ⌥ 0,

where g(x) = g1(x), . . . , gr(x) , X is a convex
subset of �n, and

�

f : �n → �

⇥

and gj : �n → �
are real-valued convex functions.

• We introduce a convex function P : �r → �,
called penalty function, which satisfies

P (u) = 0,  u ⌥ 0, P (u) > 0, if ui > 0 for some i

• We consider solving, in place of the original, the
“penalized” problem

minimize f(x) + P
�
g(x)

subject to x ⌘ X,

⇥

◆
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FENCHEL DUALITY

• We have

inf
⇤
f(x) + P

�
g(x)

⇥⌅
= inf

⇤
p(u) + P (u)

x⌦X u⌦�r

⌅

where p(u) = infx X, g(x) u f(x) is the primal func-⌦ ⌅
tion.

• Assume −⇣ < q⇤ and f⇤ < ⇣ so that p is
proper (in addition to being convex).

• By Fenchel duality

inf µ
u r

⇤
p(u) + P (u)

⌅
= sup )

µ 0

⇤
q( −Q(µ)

⌦� ⇧

⌅
,

where for µ ≥ 0,

q(µ) = inf
⇤
f(x) + µ�g(x)

x⌦X

is the dual function, and Q is the conjugate

⌅

convex
function of P :

Q(µ) = sup
u⌦�r

⇤
u�µ− P (u)

⌅
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PENALTY CONJUGATES
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Slope = a

Q(µ)P (u) = max{0, au+u2}

P (u) = c max{0, u}

c

P (u) = (c/2)
�
max{0, u}

⇥2

Q(µ) =
⇤

(1/2c)µ2 if µ ⇥ 0
⇤ if µ < 0

Q(µ) =
⌅

0 if 0 ≤ µ ≤ c
⇤ otherwise

• Important observation: For Q to be flat for
some µ > 0, P must be nondifferentiable at 0.

9



FENCHEL DUALITY VIEW
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• For the penalized and the original problem to
have equal optimal values, Q must be“flat enough”
so that some optimal dual solution µ⇤ minimizes
Q, i.e., 0 ⌘ ◆Q(µ⇤) or equivalently

µ⇤ ⌘ ◆P (0)

• True if ( ) =
�r

P u c j=1 max{0, uj} with c ≥
�µ⇤� for some optimal dual solution µ⇤.
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DIRECTIONAL DERIVATIVES

• Directional derivative of a proper convex f :

f(x + αd) f(x)
f �(x; d) = lim

−
, x

α⌥0 α
⌘ dom(f), d ⌘ �n



Slope: f ⇥(x; d)

0

f(x + d)

Slope: f(x+d)−f(x)


f(x)

• The ratio

f(x + αd)− f(x)
α

is monotonically nonincreasing as α ↓ 0 and con-
verges to f �(x; d).

• For all x ⌘ ri
�
dom(f)

⇥
, f �(x; ·) is the support

function of ◆f(x).
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STEEPEST DESCENT DIRECTION

• Consider unconstrained minimization of convex
f : �n → �.

• A descent direction d at x is one for which
f �(x; d) < 0, where

f(x + αd) f(x)
f �(x; d) = lim

−
= sup d�g

α⌥0 α g⌦⌦f(x)

is the directional derivative.

• Can decrease f by moving from x along descent
direction d by small stepsize α.

• Direction of steepest descent solves the problem

minimize f �(x; d)

subject to �d� ⌥ 1

• Interesting fact: The steepest descent direc-
tion is −g⇤, where g⇤ is the vector of minimum
norm in ◆f(x):

min f �(x; d) = min max d�g = max min d�g
◆d◆⌅1 ◆d◆⌅1 g⌦

�
⌦f(x)

⇥
g⌦⌦f(x) ◆d◆⌅1

= max
g⌦⌦f(x)

−�g� = − min
g⌦⌦f(x)

�g�

◆
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STEEPEST DESCENT METHOD

• Start with any x0 ⌘ �n.

• For k ≥ 0, calculate −gk, the steepest descent
direction at xk and set

xk+1 = xk − αkgk

• Di⇥culties:
− Need the entire ◆f(xk) to compute gk.

− Serious convergence issues due to disconti-
nuity of ◆f(x) (the method has no clue that
◆f(x) may change drastically nearby).

• Example with αk determined by minimization
along −gk: {xk} converges to nonoptimal point.
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