LECTURE 14

LECTURE OUTLINE

e (Conic programming
e Semidefinite programming
e Exact penalty functions

e Descent methods for convex/nondifferentiable
optimization

e Steepest descent method

All figures are courtesy of Athena Scientific, and are used with permission.
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LINEAR-CONIC FORMS

min cx — max b\,
Az=b, z€C c—A'XeC

min cx = max D'\,
Az—beC A'd=c, A\eC

wherexz e R, A e Rm, ce Rn, b e R™m, A: mxn.

e Second order cone programming:

minimize c'x
subject to A;jx — b, € C, 1 =1,...,m,
where ¢, b; are vectors, A; are matrices, b; is a

vector in R, and

C; : the second order cone of Jr:

e The cone hereis(C=Cy x ---xC,,

e The dual problem is
maximize Z bi A
i=1

subject to ANi=c, NeC,i1=1,...,m,
J i
i=1

where A = (A1,...,Am).
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EXAMPLE: ROBUST LINEAR PROGRAMMING

minimize c'x

subject to ajx <bj, V(aj,b;) €T;, j=1,...,m

where c € &, and T is a given subset of Jt»+1.

e We convert the problem to the equivalent form

minimize c'x

subject to g;(x) <0, jg=1,...,r,

where g;(z) = sup(, p.yer, {a;T — bj }.

e Lor special choice where T is an ellipsoid,

Ty = {(@; + Pjuj, bj + dsuy) | lull <1, u; € Rna }

we can express ¢gj(z) < 0 in terms of a SOC:
gj(x) = sup {(@ + Pju;)'z — (bj + qju;)}

[l | <1

= sup (Pir—q;)uj+ a;r — b,
lu ]| <1

= || Piz — ;|| + @z — b;.

Thus, g;(z) < 0 iff (PJ{QZ—Qj,Ej—E;-Qf) e C;, where
C; is the SOC of R™i*1,
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SEMIDEFINITE PROGRAMMING

e (onsider the symmetric n X n matrices. Inner
product < X, Y >= trace(XY) = > 1" ._ | %ijyij.

e Let C be the cone of pos. semidefinite matrices.

e (U is self-dual, and its interior is the set of pos-
itive definite matrices.

e Fix symmetric matrices D, Aq,..., A, and
vectors by, ..., by, and consider

minimize < D,X >
subject to < A;, X >=b;, 1=1,....m, X eCl

e Viewing this as a linear-conic problem (the first

special form), the dual problem (using also self-
duality of C) is

maximize Z bi)\i
i=1
subject to D — (MA1+ -+ Andnm) € C

e There is no duality gap if there exists primal
feasible solution that is pos. definite, or there ex-
ists A such that D — (M A1 + -+ + A Ap) is pos.
definite.



EXAMPLE: MINIMIZE THE MAXIMUM
EIGENVALUE

e Given nxn symmetric matrix M (), depending
on a parameter vector A\, choose A to minimize the
maximum eigenvalue of M (\).

e We pose this problem as
minimize z

subject to maximum eigenvalue of M () < z,
or equivalently

minimize 2
subject to zI — M(\) € C,

where [ is the n X n identity matrix, and C' is the
semidefinite cone.

e If M()\) is an affine function of A,
M()\) :D+)\1M1 ‘|‘""|‘>\mMm7
the problem has the form of the dual semidefi-

nite problem, with the optimization variables be-
ing (2, A\1,...,Am).



EXAMPLE: LOWER BOUNDS FOR
DISCRETE OPTIMIZATION

e (Quadr. problem with quadr. equality constraints
minimize z’'Qox + ajx + bo

subject to z'Q;x +alx+b; =0, 1=1,...,m,
Qo, - - ., Qm: symmetric (not necessarily > 0).

e (Can be used for discrete optimization. For ex-
ample an integer constraint x; € {0,1} can be
expressed by x? — x; = 0.

e The dual function is

g(A) = inf {/Q(N)z +a(N)z +b(\)},

rER™

where

Q) =Qo+ > \iQs,
i—1

a(A) =ao+ Y Niai, bA)=bo+ Y Aib;
1=1 1=1

e It turns out that the dual problem is equivalent
to a semidefinite program ...
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EXACT PENALTY FUNCTIONS

e We use Fenchel duality to derive an equiva-
lence between a constrained convex optimization
problem, and a penalized problem that is less con-
strained or is entirely unconstrained.

e We consider the problem

minimize f(x)
subject to x € X, g(x) <0,

where g(z) = (g1(z),...,g-(x)), X is a convex
subset of 3t?, and f : R*» — RN and g; : kI — R

are real-valued convex functions.

e We introduce a convex function P : R — R,
called penalty function, which satisfies

P(u)=0, Vu <0, P(u)>0, if u; > 0 for some 17

e We consider solving, in place of the original, the
“penalized” problem

minimize f(z) + P(g(z))
subject to x € X,



FENCHEL DUALITY

e We have

;g{{f(a:) — P(g(m))} = inf {p(u) —- P(u)}

ueR”
where p(u) = inf ¢ x 4(2)<u f(2) is the primal func-
tion.

e Assume —oo0 < ¢* and f* < oo so that p is
proper (in addition to being convex).

e By Fenchel duality

inf {p(u) + P(u)} = sup{q(n) — Q(u)},

ueR” ©1>0

where for © > 0,

g(p) = inf {f(z) +pg(x)}

reX

is the dual function, and () is the conjugate convex
function of P:

Q(p) = usgggr{u’u — P(u)}



PENALTY CONJUGATES

‘P(u) = cmax{0,u} Q(n) ZA{(;O i)ftgegwﬁibse_ i

- -
0 u 0 C W
‘P(u) = max{0, au +u?} AQ(N)
Slope = a
o
/0 Uu 0 a ¥

P(u) :‘ (c/2)(maX{0,U})2 Q1) :A{ 2/26)’&2 EZ i 8

e Important observation: For () to be flat for
some 1 > 0, P must be nondifferentiable at 0.



FENCHEL DUALITY VIEW

Y

pu* € 0P(0)
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e For the penalized and the original problem to
have equal optimal values, () must be“flat enough”
so that some optimal dual solution p* minimizes
Q, i.e., 0 € 0Q(u*) or equivalently

True if P(u) = ¢ ;_; max{0,u;} with ¢ >
|o*|| for some optimal dual solution p*.



DIRECTIONAL DERIVATIVES

e Directional derivative of a proper convex f:

f/(z;d) = lim flz +ad) - f(x), z € dom(f), d € Rn

al0 Q

f(:z:—i—ozal)A

f(z+@d)—f (@)

Slope:

f(il?) Slop:e: fiz:d)
|
0 (o] «

e The ratio

flz 4 ad) — f(z)

«

is monotonically nonincreasing as a | 0 and con-
verges to f/(x;d).

e Lor all z € ri(dom(f)), f'(x;-) is the support
function of df(x).
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STEEPEST DESCENT DIRECTION

e (Consider unconstrained minimization of convex

f R — R.

e A descent direction d at x is one for which
f'(x;d) < 0, where

f'(x;d) = lim flz+ad) — f(@) — sup dg

al0 Qv gcdf(z)

is the directional derivative.

e Can decrease f by moving from x along descent
direction d by small stepsize «.

e Direction of steepest descent solves the problem
minimize f/(x;d)
subject to ||d|| <1

e Interesting fact: The steepest descent direc-

tion is —g*, where ¢* is the vector of minimum
norm in Jf(x):

min f/(x;d) = min max d'g= max min d'g
ld]|<1 ldlI<1 gedf(x) g€of(x) |ld|[<1
= max (—lg]) =— min g

gedf(x) geof(x)
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STEEPEST DESCENT METHOD

e Start with any z¢ € R".

e For k>0

T — OpJgk

Lk+1

, calculate —gi, the steepest descent

direction at x; and set

e Difficulties

— Need the entire 0f(xx) to compute gy.

— Serious convergence issues due to disconti-

nuity of 0f(x) (the method has no clue that
0f(x) may change drastically nearby).

e Example with aj determined by minimization
along —gx: {xr} converges to nonoptimal point.
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