LECTURE 13

LECTURE OUTLINE

Problem Structures

— Separable problems

— Integer/discrete problems — Branch-and-bound
— Large sum problems

— Problems with many constraints

Conic Programming
— Second Order Cone Programming

— Semidefinite Programming

All figures are courtesy of Athena Scientific, and are used with permission.
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SEPARABLE PROBLEMS

e Consider the problem
™m

minimize Z fi(z;)
i=1

™m
S. t. Zgﬂ(azz) <0, g9=1,....r, z; € X;, V1
i=1
where f; : " — I and gj; : 7™ — N are given
functions, and X; are given subsets of Jt7i.

e Form the dual problem

maximize Zqi(,u) = legc {fz(ﬂcz) + Z,Ujgji(xi)}
i=1 i=1 j=1

subject to p© >0

e Important point: The calculation of the dual
function has been decomposed into n simpler
minimizations. Moreover, the calculation of dual
subgradients is a byproduct of these mini-
mizations (this will be discussed later)

e Another important point: If X; is a discrete
set (e.g., X; = {0,1}), the dual optimal value is
a lower bound to the optimal primal value. It is
still useful in a branch-and-bound scheme.
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LARGE SUM PROBLEMS

e (Consider cost function of the form

f(x) = Z fi(x), m is very large,
i=1
where f; : " — R are convex. Some examples:

e Dual cost of a separable problem.

e Data analysis/machine learning: zx is pa-
rameter vector of a model; each f; corresponds to
error between data and output of the model.

— Least squares problems (f; quadratic).

— {1-regularization (least squares plus /1 penalty):

min Z(a}m —bj)2 + VZ |z
=1 i=1

The nondifferentiable penalty tends to set a large
number of components of x to 0.

e Min of an expected value E{F(m, w) }, where
w is a random variable taking a finite but very
large number of values w;, © = 1,...,m, with cor-
responding probabilities ;.

e Stochastic programming:

x

min | F1(z) + Ew{min F>(z,y, w) }
y

e Special methods, called incremental apply.
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PROBLEMS WITH MANY CONSTRAINTS

e Problems of the form

minimize f(x)

subject to a’x < bj, j=1,...,7,

where r: very large.

e One possibility is a penalty function approach:
Replace problem with

T ERMT

min f(x) + CZ P(az — bj)
j=1

where P(-) is a scalar penalty function satisfying
P(t)=0ift <0,and P(t) >0ift >0, and cis a
positive penalty parameter.

e Lxamples:

— The quadratic penalty P(t) = (max{0, t})2.

— The nondifferentiable penalty P(t) = max{0,t}.
e Another possibility: Initially discard some of
the constraints, solve a less constrained problem,

and later reintroduce constraints that seem to be
violated at the optimum (outer approximation).

e Also inner approximation of the constraint set.



CONIC PROBLEMS

e A conic problem is to minimize a convex func-
tion f : R? +— (—o0,00] subject to a cone con-
straint.
e The most useful /popular special cases:

— Linear-conic programming

— Second order cone programming

— Semidefinite programming

involve minimization of a linear function over the
intersection of an affine set and a cone.

e (Can be analyzed as a special case of Fenchel
duality.

e There are many interesting applications of conic
problems, including in discrete optimization.



PROBLEM RANKING IN

INCREASING PRACTICAL DIFFICULTY

e Linear and (convex) quadratic programming.

— Favorable special cases (e.g., network flows).
e Second order cone programming.
e Semidefinite programming.

e Convex programming.

— Favorable special cases (e.g., network flows,
monotropic programming, geometric program-
ming).

e Nonlinear /nonconvex/continuous programming.

— Favorable special cases (e.g., twice differen-
tiable, quasi-convex programming).

— Unconstrained.

— Constrained.

e Discrete optimization/Integer programming

— Favorable special cases.



CONIC DUALITY

e Consider minimizing f(x) over z € C, where f :
R" — (—o0, 0] is a closed proper convex function
and C is a closed convex cone in R".

e We apply Fenchel duality with the definitions

ho) =@, @ ={7 450

The conjugates are

* B ro * B ;[0 ifAeCF,
) = sup (Ao f(w)},fz(/\)—szgx\w—{oo it & O,

where C* = {\ | Xax <0,V z € C} is the polar
cone of C.

e The dual problem is

minimize f*(\)

subject to A € C,
where f* is the conjugate of f and
C={\|Ne>0,Vzel}

C = —(C* is called the dual cone.
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LINEAR-CONIC PROBLEMS

e Let f be affine, f(x) = ¢z, with dom(f) be-
ing an affine set, dom(f) = b+ S, where S is a
subspace.

e The primal problem is

minimize c'x

subject to x —be S, z €.

e The conjugate is

f¥(A) = sup (A —c)w =sup(A—c)(y+b)

r—besS yes
C((A—o)b ifA—ce St
| @ if \—c¢ S+,

so the dual problem can be written as

minimize b’

subject to A—ce S+, xeC.

e The primal and dual have the same form.

e If C is closed, the dual of the dual yields the
primal.



SPECIAL LINEAR-CONIC FORMS

min czx — max b\,
Ax=b, xe€C C—A/)\Eé

min cx S max D'\,
Ax—beC A'd=c, \eC

wherez e R, A e Rm, ce Rn, b€ R, A: mxn.

e For the first relation, let T be such that Az = b,
and write the problem on the left as

minimize c'x
subject to * —x € N(A), ze€C
e The dual conic problem is
minimize T'u
subject to p—c e N(A)+, uped.
e Using N(A)+ = Ra(A’), write the constraints
as ¢ — u € —Ra(A’) =Ra(A’), u € C, or
c— =AM\, neC, for some \ € R™.
e Change variables u = ¢ — A’\, write the dual as

minimize T’ (¢ — A’))

subject to ¢ — A’ € C

discard the constant T'c, use the fact AT = b, and
change from min to max.
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SOME EXAMPLES

e Nonnegative Orthant: C = {z | x > 0}.
e The Second Order Cone: Let

C:{(ml,...,xn) ]xnz\/x%+---+x%_1}

AX3

ﬂ X1
X2

e The Positive Semidefinite Cone: Consider
the space of symmetric n X n matrices, viewed as
the space ®"”* with the inner product

< X,Y >=trace(XY) Z Z:Ezgyzg

1=1 5=1
Let C be the cone of matrices that are positive
semidefinite.

o All these are self-dual, i.e., C = —C* = C.
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SECOND ORDER CONE PROGRAMMING

e Second order cone programming is the linear-
conic problem

minimize c'x

subject to A;x —b; € C, 1 =1,...,m,

where c, b; are vectors, A; are matrices, b; is a
vector in B¢, and

(' : the second order cone of R

e 'The cone here is

C=Cyx---xC,,

%3

ﬂ X1
X2
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SECOND ORDER CONE DUALITY

e Using the generic special duality form

min cx = max D'\,
Ax—beC A'd=c, \eC

and self duality of C', the dual problem is

m
maximize E bi \;

1=1

subject to ZAQ)\Z- =c, Ne(C;y 1=1,...,m,
i=1
where A = (A1,...,Am).

e The duality theory is no more favorable than
the one for linear-conic problems.

e There is no duality gap if there exists a feasible
solution in the interior of the 2nd order cones C;.

e Generally, 2nd order cone problems can be
recognized from the presence of norm or convex
quadratic functions in the cost or the constraint
functions.

e There are many applications.
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