
LECTURE 12

LECTURE OUTLINE

• Subgradients

• Fenchel inequality

• Sensitivity in constrained optimization

• Subdifferential calculus

• Optimality conditions

Reading: Section 5.4

All figures are courtesy of Athena Scientific, and are used with permission.

1



SUBGRADIENTS
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• Let f : �n → (−⇣,⇣] be a convex function.
A vector g ⌘ �n is a subgradient of f at a point
x ⌘ dom(f) if

f(z) ≥ f(x) + (z − x)�g,  z ⌘ �n

• Support Hyperplane Interpretation: g is
a subgradient if and only if

f(z)− z�g ≥ f(x)− x�g,  z ⌘ �n

so g is a subgradient at x if and only if the hyper-
plane in ��n+1 that has normal (−g, 1) and passes
through x, f(x)

⇥
supports the epigraph of f .

• The set of all subgradients at x is the subdiffer-
ential of f at x, denoted ◆f(x).

By convention ◆f(x) = Ø for x / dom(f).

◆

• ⌘
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EXAMPLES OF SUBDIFFERENTIALS

Some examples:•
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• If f is differentiable, then ◆f(x) = {∇f(x)}.
Proof: If g ⌘ ◆f(x), then

f(x + z) ≥ f(x) + g�z,  z ⌘ �n.

Apply this with z = ⇤
1st order Taylor series

�
∇f(x)−g

⇥
, ⇤ ⌘ �, and use

expansion to obtain

�∇f(x)− g�2 ⌥ −o(⇤)/⇤,  ⇤ < 0
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EXISTENCE OF SUBGRADIENTS

• Let f : �n → (−⇣,⇣] be proper convex.

• Consider MC/MC with

M = epi(fx), fx(z) = f(x + z)− f(x)

◆
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• By 2nd MC/MC Duality Theorem, ◆f(x) is
nonempty and compact if and only if x is in the
interior of dom(f).

• More generally: for every x ⌘ ri dom(f)),

◆f(x) = S⊥ + G,

�

where:

− S is the subspace that is parallel to the a⌅ne
hull of dom(f)

G is a nonempty and compact set.−
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EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

• Let C be a convex set, and ⌅C be its indicator
function.

• For x ⌘/ C, ◆⌅C(x) = Ø (by convention).

• For x ⌘ C, we have g ⌘ ◆⌅C(x) iff

⌅C(z) ≥ ⌅C(x) + g�(z − x),  z ⌘ C,

or equivalently g�(z − x) ⌥ 0 for all z ⌘ C. Thus
◆⌅C(x) is the normal cone of C at x, denoted
NC(x):

NC(x) = g g�(z x) 0, z C .
⇤

| − ⌥  ⌘
⌅

C

NC(x)

x C

NC(x)

x
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EXAMPLE: POLYHEDRAL CASE

NC(x)

C
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x

• For the case of a polyhedral set

C = {x | a�ix ⌥ bi, i = 1, . . . ,m},

we have

NC(x) =
�
{0} if x ⌘ int(C),
cone

�
{ai | a�ix = bi}

⇥
if x ⌘/ int(C).

• Proof: Given x, disregard inequalities with
a�ix < bi, and translate C to move x to 0, so it
becomes a cone. The polar cone is NC(x).
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FENCHEL INEQUALITY

• Let f : �n → (−⇣,⇣] be proper convex and
let f be its conjugate. Using the definition of
conjugacy, we have Fenchel’s inequality :

x�y ⌥ f(x) + f (y),  x ⌘ �n, y ⌘ �n.

• Conjugate Subgradient Theorem: The fol-
lowing two relations are equivalent for a pair of
vectors (x, y):

(i) x�y = f(x) + f (y).

(ii) y ⌘ ◆f(x).

If f is closed, (i) and (ii) are equivalent to

(iii) x ⌘ ◆f (y).

◆
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⇧f(y) ⇧f(x)
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MINIMA OF CONVEX FUNCTIONS

• Application: Let f be closed proper convex
and let X⇤ be the set of minima of f over �n.
Then:

(a) X⇤ = ◆f (0).

(b) X⇤ is nonempty if 0 ⌘ ri dom(f ) .

(c) X⇤ is nonempt� y and compact

�

if and

⇥

only if
0 ⌘ int dom(f ) .

Proof: (a) We have x

⇥

⇤ ⌘ X⇤ iff f(x) ≥ f(x⇤) for
all x ⌘ �n. So

x⇤ ⌘ X⇤ iff 0 ⌘ ◆f(x⇤) iff x⇤ ⌘ ◆f (0)

where:

− 1st relation follows from the subgradient in-
equality

− 2nd relation follows from the conjugate sub-
gradient theorem

(b) ◆f (0) is nonempty if 0 ⌘ ri dom(f ) .

(c) ◆f (0) is nonempty and compact

�

if and

⇥

only
if 0 ⌘ int dom(f ) . Q.E.D.

� ⇥
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SENSITIVITY INTERPRETATION

• Consider MC/MC for the case M = epi(p).

• Dual function is

q(µ) = inf p(u) + µ u = p ( µ),
u⌦�m

⇤
�
⌅

− −

where p is the conjugate of p.

• Assume p is proper convex and strong duality
holds, so p(0) = w⇤ = q⇤ = supµ m

⇤
−p (⌦� −µ)

⌅
.

Let Q⇤ be the set of dual optimal solutions,

Q⇤ =
⇤
µ⇤ | p(0) + p (−µ⇤) = 0

⌅
.

From Conjugate Subgradient Theorem, µ⇤ ⌘ Q⇤

if and only if −µ⇤ ⌘ ◆p(0), i.e., Q⇤ = −◆p(0).

• If p is convex and differentiable at 0, −∇p(0) is
equal to the unique dual optimal solution µ⇤.

• Constrained optimization example:

p(u) = inf f(x),
x⌦X, g(x)⌅u

If p is convex and differentiable,

◆p(0)
µ⇤j = − , j = 1, . . . , r.

◆uj
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EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION

• Consider the support function ↵X(y) of a set
X. To calculate ◆↵X(y) at some y, we introduce

r(y) = ↵X(y + y), y ⌘ �n.

• We have ◆↵X(y) = ◆r(0) = arg minx n r (x).⌦�

• We have r (x) = supy n{y�x− r(y)⌦� }, or

r (x) = sup {y�x− ↵X(y + y)
y⌦�n

} = ⌅(x)− y�x,

where ⌅ is the indicator function of cl
�
conv(X) .

• Hence ◆↵X(y) = arg minx n

⇤
⌅(x)− y�x⌦�

⇥

⌅
, or

◆↵X(y) = arg max y�x
x⌦cl conv(X)

� ⇥

0

y1

y2

X

⇥σX(y2)

⇥σX(y1)
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EXAMPLE: SUBDIFF. OF POLYHEDRAL FN

• Let

f(x) = max a�1x + b1, . . . , a�rx + br .{ }

f(x)

x0

Epigraph of f
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• For a fixed x ⌘ �n, consider

Ax =
⇤
j | a�jx + bj = f(x)

and the function r(x) = max a�

⌅

jx | j ⌘ Ax .

• It can be seen that ◆f(x) =

⇤

◆r(0).

⌅

• Since r is the support function of the finite set
{aj | j ⌘ Ax}, we see that

◆f(x) = ◆r(0) = conv {aj | j ⌘ Ax}
� ⇥
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CHAIN RULE

• Let f : �m → (−⇣,⇣] be convex, and A be
a matrix. Consider F (x) = f(Ax) and assume
that F is proper. If either f is polyhedral or else
Range(A) ⌫ ri(dom(f)) = Ø, then

◆F (x) = A�◆f(Ax),  x ⌘ �n.

Proof: Showing ◆F (x) ↵ A�◆f(Ax) is simple and
does not require the relative interior assumption.
For the reverse inclusion, let d ⌘ ◆F (x) so F (z) ≥
F (x)+(z−x)�d ≥ 0 or f(Az)−z�d ≥ f(Ax)−x�d
for all z, so (Ax, x) solves

minimize f(y)− z�d

subject to y ⌘ dom(f), Az = y.

If R(A)⌫ ri(dom(f)) = Ø, by strong duality theo-
rem, there is a dual optimal solution ⌃, such that

(Ax, x) ⌘ arg min
⇤
f(y)−z�d+⌃

y⌦�m, z⌦�n

�(Az−y)

Since the min over z is unconstrained, we hav

⌅

e
d = A�⌃, so Ax ⌘ arg miny⌦�m

f(y) f(Ax) + ⌃�(y Ax),

⇤
f(y)− ⌃�y

⌅
, or

≥ −  y ⌘ �m.

Hence ⌃ ⌘ ◆f(Ax), so that d = A�⌃ ⌘ A�◆f(Ax).
It follows that ◆F (x) ⌦ A�◆f(Ax). In the polyhe-
dral case, dom(f) is polyhedral. Q.E.D.

◆

✓

✓
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SUM OF FUNCTIONS

• Let fi : �n → (−⇣,⇣], i = 1, . . . ,m, be proper
convex functions, and let

F = f1 + · · · + fm.

• Assume that ⌫m
1=1ri dom(fi) = Ø.

• Then

� ⇥

◆F (x) = ◆f1(x) + · · · + ◆fm(x),  x ⌘ �n.

Proof: We can write F in the form F (x) = f(Ax),
where A is the matrix defined by Ax = (x, . . . , x),
and f : �mn → (−⇣,⇣] is the function

f(x1, . . . , xm) = f1(x1) + · · · + fm(xm).

Use the proof of the chain rule.

• Extension: If for some k, the functions fi, i =
1, . . . , k, are polyhedral, it is su⌅cient to assume

⌥
⌫k

i=1 dom(fi)
�
⌫
⌥
⌫m

i=k+1 ri
�
dom(fi)

⇥�
= Ø.

◆

✓

◆

✓
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CONSTRAINED OPTIMALITY CONDITION

• Let f : �n → (−⇣,⇣] be proper convex, let X
be a convex subset of �n, and assume that one of
the following four conditions holds:

(i) ri
�
dom(f)

⇥
⌫ ri(X) = Ø.

(ii) f is polyhedral and dom( ) ri( ) = Ø

(iii) X is polyhedral and ri

(iv) f and X are polyhedral,

�
f ⌫

⇥
X .

dom(f) ⌫X = Ø.

and dom(f) ⌫X = Ø.

Then, a vector x⇤ minimizes f over X iff there
exists g ⌘ ◆f(x⇤) such that −g belongs to the
normal cone NX(x⇤), i.e.,

g�(x− x⇤) ≥ 0,  x ⌘ X.

Proof: x⇤ minimizes

F (x) = f(x) + ⌅X(x)

if and only if 0 ⌘ ◆F (x⇤). Use the formula for
subdifferential of sum. Q.E.D.

◆

✓
✓
✓

✓
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ILLUSTRATION OF OPTIMALITY CONDITION

Level Sets of f

⌃f(x∗)

x∗

Level Sets of f
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• In the figure on the left, f is differentiable and
the condition is that

−∇f(x⇤) ⌘ NC(x⇤),

which is equivalent to

∇f(x⇤)�(x− x⇤) ≥ 0,  x ⌘ X.

• In the figure on the right, f is nondifferentiable,
and the condition is that

−g ⌘ NC(x⇤) for some g ⌘ ◆f(x⇤).
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