LECTURE 12

LECTURE OUTLINE

e Subgradients

e Fenchel inequality

e Sensitivity in constrained optimization
e Subdifferential calculus

e Optimality conditions

Reading: Section 5.4

All figures are courtesy of Athena Scientific, and are used with permission.
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SUBGRADIENTS
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o Let f:R" — (—o00,00] be a convex function.

A vector g € R is a subgradient of f at a point
xr € dom(f) if

f(z) 2 flx) + (z =2)'g,  Vzehn

e Support Hyperplane Interpretation: g is
a subgradient if and only if

f(z) —2'g > f(x) — 2'g, V 2z € jn

so g is a subgradient at = if and only if the hyper-
plane in |7+1 that has normal (—g, 1) and passes
through (az, f (x)) supports the epigraph of f.

e The set of all subgradients at x is the subdiffer-
ential of f at x, denoted Of(x).

e By convention 0f(z) = @ for x ¢ dom(f).
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EXAMPLES OF SUBDIFFERENTIALS

e Some examples:

f(z) = |a|

A of(x) A

=1 0 1 T j o 1

e If f is differentiable, then 0f(z) = {V f(x)}.
Proof: If g € 0f(x), then

8y

flx+2) > f(x)+ gz, V z € R

Apply this with z = y(V f(z) —g), v € R, and use
1st order Taylor series expansion to obtain

[Vf(z) —gll? < —o(v)/v, V<0



EXISTENCE OF SUBGRADIENTS

o Let f:R" — (—o0, 0| be proper convex.

e Consider MC/MC with
M =epi(fz),  falz) = flz+2) - f(2)

Translated
Epigraph of f

=y

e By 2nd MC/MC Duality Theorem, O0f(x) is
nonempty and compact if and only if = is in the
interior of dom(f).

e More generally: for every z € ri(dom(f)),
df(x) = SL + G,

where:

— S is the subspace that is parallel to the affine
hull of dom(f)

— (' is a nonempty and compact set.
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EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

e Let C be a convex set, and d¢ be its indicator
function.

e Forx ¢ C, d6c(x) = O (by convention).
e For x € C, we have g € 0d¢(x) iff
dc(2) > dc(x) +¢' (2 — x), Vzed(,
or equivalently ¢g’(z — x) < 0 for all z € C'. Thus
00c(x) is the normal cone of C' at x, denoted

Ne(x):

Ne(z)={g|g(z—xz) <0,V zeC}.




EXAMPLE: POLYHEDRAL CASE

e For the case of a polyhedral set
C=A{z|dx<b,i=1,...,m},

we have

{0} if z € int(C),
Ne(z) = {COHG({ai |ale =bi}) if « ¢ int(C).

e Proof: Given z, disregard inequalities with
a;x < b;, and translate C' to move x to 0, so it
becomes a cone. The polar cone is N¢(x).



FENCHEL INEQUALITY

o Let f:R" +— (—o0,00] be proper convex and
let f* be its conjugate. Using the definition of
conjugacy, we have Fenchel’s inequality:

'y < f(x) 4+ f*(y), VoeRr ye R

e Conjugate Subgradient Theorem: The fol-
lowing two relations are equivalent for a pair of
vectors (x,y):

(i) =’y = f(z) + f*(v).
(ii) y € 0f(x).

If f is closed, (i) and (ii) are equivalent to

(iii) = € af*(y).

f(z) A ) A

Epigraph of f Epigraph of f*




MINIMA OF CONVEX FUNCTIONS

e Application: Let f be closed proper convex
and let X* be the set of minima of f over R™.
Then:

(a) X* = 0f*(0).
(b) X* is nonempty if 0 € ri(dom(f*)).
(¢) X* is nonempty and compact if and only if

0 € int(dom(f*)).

Proof: (a) We have z* € X* iff f(x) > f(a*) for
all x € RX". So

r* € X* iff —0e€df(z*) iff — x* € df*(0)

where:
— 1st relation follows from the subgradient in-
equality
— 2nd relation follows from the conjugate sub-
gradient theorem

(b) 8f*(0) is nonempty if 0 € ri(dom(f*)).

(¢) 0f*(0) is nonempty and compact if and only
if 0 € int(dom(f*)). Q.E.D.



SENSITIVITY INTERPRETATION

e Consider MC/MC for the case M = epi(p).

e Dual function is

where p* is the conjugate of p.

e Assume p is proper convex and strong duality

holds, so p(0) = w* = ¢* = sup,,cpm { —p*(—,u)}.
Let ()* be the set of dual optimal solutions,

Q* = {p* | p(0) + p*(—p*) = 0}.
From Conjugate Subgradient Theorem, u* € Q*
if and only if —p* € 9p(0), i.e., Q* = —0p(0).

e If p is convex and differentiable at 0, —Vp(0) is
equal to the unique dual optimal solution p*.

e Constrained optimization example:

p(u)= _inf  f(z),

reX, g(x)<u
If p is convex and differentiable,
. __0op(0)

JE— | =1,....m
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EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION

e Consider the support function ox(y) of a set
X. To calculate dox (y) at some 7y, we introduce

r(y) = ox(y+7), y € R

e We have dox(y) = 0r(0) = arg mingepn r*(x).
e We have r*(x) = sup,cpn{y’z —r(y)}, or

r*(z) = sup {y'z —ox(y +y)} = 0(z) — Yz,
yeR™

where ¢ is the indicator function of cl(conv(X)).

e Hence Jox(y) = argmingemn {d(x) — ¥z}, or

Jox(y) =arg max Y
xecl (conv(X))

A

8/0X(y2)

-
-
-

dax (y1)
Y2 !
Y1
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EXAMPLE: SUBDIFF. OF POLYHEDRAL FN

o Let

f(x) = max{ajx + b1,...,arx + by }.

Epigraph of f

1 > >
y T T 0 T

e For a fixed T € R", consider
Az ={j|dT+b; = f(T)}

and the function r(x) = max{a;-:v | j € Az}
e It can be seen that df(x) = 9r(0).

e Since r is the support function of the finite set
{a; | 7 € Az}, we see that

df(x) =0r(0) = Conv({aj | j € Ag})
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CHAIN RULE

e Let f: R™ +— (—o00,00] be convex, and A be
a matrix. Consider F(z) = f(Ax) and assume
that F'is proper. If either f is polyhedral or else

Range(A) Nri(dom(f)) # O, then
OF (x) = A’0f(Ax), Ve kn

Proof: Showing 0F (x) D A’0f(Ax) is simple and
does not require the relative interior assumption.
For the reverse inclusion, let d € OF (z) so F(z) >
F(z)+(z—x)'d>0or f(Az)—2'd > f(Azx) —2'd
for all z, so (Ax,x) solves

minimize f(y) — 2’d
subject to y € dom(f), Az=1y.
If R(A)Nri(dom(f)) # O, by strong duality theo-

rem, there is a dual optimal solution A, such that

A ' 2+ N (Az—
(xyz)eargyeﬁrﬂgl}gew{f(y) Zd+N(Az—y)}

Since the min over z is unconstrained, we have
d= A'\, so Ax € argmin,cpm {f(y) — )\’y}, or

fy) =2 f(Az) + N(y — Az),  VyeRm

Hence A € 0f(Ax), so that d = A’\ € A/0f(Ax).
It follows that 0F (z) C A’0f(Ax). In the polyhe-
dral case, dom(f) is polyhedral. Q.E.D.



SUM OF FUNCTIONS

o Let f; : R — (—o0,00|,7=1,...,m, be proper
convex functions, and let

F=fi+ + fm.

e Assume that N7, ri(dom(f;)) # @.
e Then

OF (x) =0fi(z) + -+ 0fm(x), V z e R

Proof: We can write F in the form F(z) = f(Ax),
where A is the matrix defined by Ax = («,...,x),
and f : R™M" — (—o0, 00| is the function

flan,. . som) = fi(z) + -+ fm(Tm).

Use the proof of the chain rule.

e Extension: If for some k, the functions f;, ¢ =
1,...,k, are polyhedral, it is sufficient to assume

(ﬂ,]f:l dom(fz-)) N (ﬂ?;kH ri(dom(fi))) + 0.
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CONSTRAINED OPTIMALITY CONDITION

o Let f:R" — (—o0, 0] be proper convex, let X
be a convex subset of ", and assume that one of
the following four conditions holds:

(i) ri(dom(f)) Nri(X) # O.

(ii) f is polyhedral and dom(f) Nri(X) # O.

(iii) X is polyhedral and ri(dom(f)) N X # @.

(iv) f and X are polyhedral, and dom(f) N X # (.

Then, a vector z* minimizes f over X iff there
exists g € Of(x*) such that —g belongs to the
normal cone Nx (x*), i.e.,

g'(x —x*) >0, VaoelX.

Proof: x* minimizes

F(z) = f(z) + ox(z)

if and only if 0 € 0F(z*). Use the formula for
subdifferential of sum. Q.E.D.
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ILLUSTRATION OF OPTIMALITY CONDITION

Level Sets of f
Ne(z* \ § % \

N
Level Sets of f

Vf(z*)

e In the figure on the left, f is differentiable and
the condition is that

—V f(z*) € Ne(z*),
which is equivalent to

Vf(x*)(x—ax*) >0, VaxelX.

e In the figure on the right, f is nondifferentiable,
and the condition is that

—g € No(x*) for some g € Of(x*).
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