LECTURE 11
LECTURE OUTLINE

e Review of convex progr. duality /counterexamples
e Fenchel Duality

e (Conic Duality

Reading: Sections 5.3.1-5.3.6

Line of analysis so far:

e Convex analysis (rel. int., dir. of recession, hy-
perplanes, conjugacy)

e MC/MC - Three general theorems: Strong dual-
ity, existence of dual optimal solutions, polyhedral
refinements

e Nonlinear Farkas’ Lemma
e Linear programming (duality, opt. conditions)

e Convex programming

minimize f(x)
subject to z € X, g¢g(x) <0, Az =0,

/

where X is convex, g(z) = (g1(z),...,gr (), f:
X—Randg;: X — RN, j=1,...,r, are convex.
(Nonlin. Farkas’ Lemma, duality, opt. conditions)

All figures are courtesy of Athena Scientific, and are used with permission.
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DUALITY AND OPTIMALITY COND.

e Pure equality constraints:

(a) Assume that f*: finite and there exists T €
ri(X) such that Az = b. Then f* = ¢* and
there exists a dual optimal solution.

(b) f* = q*, and (x*, \*) are a primal and dual
optimal solution pair if and only if x* is fea-
sible, and

z* € arg min (2, A*)

Note: No complementary slackness for equality
constraints.

e Linear and nonlinear constraints:

(a) Assume f*: finite, that there exists T € X
such that AT = b and ¢g(Z) < 0, and that
there exists & € ri(X) such that Az = b.
Then g* = f* and there exists a dual optimal
solution.

(b) f* = q*, and (z*, u*, \*) are a primal and
dual optimal solution pair if and only if z*
is feasible, u* > 0, and

z* € argmin L(z, p*, A*), pjg;(z*) =0, ¥
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COUNTEREXAMPLE 1

e Strong Duality Counterexample: Consider

minimize f(x)= e~ V*122
subject to z1 =0, reX={z|x>0}

Here f* =1 and f is convex (its Hessian is > 0 in
the interior of X'). The dual function is

0 if A >0,
—o0 otherwise,

Q()\) — inf {€_V$1$2 —+ )\,ﬁljl} — {

x>0

(when \ > 0, the expression in braces is nonneg-
ative for x > 0 and can approach zero by taking
r1 — 0 and x122 — 00). Thus ¢* = 0.

e The relative interior assumption is violated.

e As predicted by the corresponding MC/MC
framework, the perturbation function

0 ifu>0,

p(u) = inf e Vv¥1T2 = { 1 ifu=0,
r1=u, x>0 .

= oo if u <0,

is not lower semicontinuous at u = 0.



COUNTEREXAMPLE VISUALIZATION

0 ifu>0,
e~ VIiT2 — { 1 ifu=0,

o if u <0,

20

15
1T = U

e (Connection with counterexample for preserva-
tion of closedness under partial minimization.



COUNTEREXAMPLE II

e Existence of Solutions Counterexample:
Let X =R, f(x) =z, g(x) = 22. Then x* = 0 is
the only feasible/optimal solution, and we have

1
qW%{£$¢+uﬁ}=—@; V>0,

and g(u) = —oo for 4 < 0, so that g* = f* = 0.
However, there is no pu* > 0 such that q(u*) =
q* = 0.

e The perturbation function is

pwﬁszx:{‘WZﬁUZQ

x2<u o0 it u < 0.

p(u) }

epi(p)




FENCHEL DUALITY FRAMEWORK

e Consider the problem

minimize fi(x) + fa(x)

subject to x € R,
where f1 : R — (—o00, 00| and f2 : " — (—00, o]
are closed proper convex functions.

e Convert to the equivalent problem

minimize fi(x1) + f2(x2)
subject to x1 = x2, =1 € dom(f1), z2 € dom(f2)

e The dual function is

q(M) inf {fi(z1) + fa(2) + N (z2 — 31)

x1€dom(f1), xg€dom(f2)

— Inf {fl (331) — >\/$1} —+ il’l;en{fQ(CEQ) + )\IQJQ}

xro €

e Dual problem: max {—f;(\) — f3(=\)} =
—miny{—q(\)} or

minimize f{(\) 4+ f3(—A)
subject to A\ € R,

where f;* and fJ are the conjugates.
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FENCHEL DUALITY THEOREM

e (Consider the Fenchel framework:

(a) If f* is finite and ri(dom(f1)) Nri(dom( f2)) #
@, then f* = ¢* and there exists at least one
dual optimal solution.

(b) There holds f* = ¢*, and (x*, A\*) is a primal
and dual optimal solution pair if and only if

> . / k 3k . / >k
T € arg wnelg%%{fl(as)—a: A }, xr € arg xrg;%rqll{fg(x)ﬂ—x A }

Proof: For strong duality use the equality con-
strained problem

minimize f1 (xl) -+ f2 (:1;2)

subject to x1 = x2, 1 € dom(f1), 2 € dom(f2)

and the fact

ri(dom(fl) xdom(fg)) = ri(dom(f1)) X (dOm(f2)>

to satisfy the relative interior condition.

For part (b), apply the optimality conditions
(primal and dual feasibility, and Lagrangian opti-
mality).



GEOMETRIC INTERPRETATION

e When dom(f;) = dom(fz) = R, and f1 and
fo are differentiable, the optimality condition is
equivalent to

A= Vfi(a*) = =V fa(z*)

e By reversing the roles of the (symmetric) primal
and dual problems, we obtain alternative criteria
for strong duality: if ¢* is finite and ri(dom(f;)) N
ri( —dom(f3)) # @, then f* = ¢* and there exists
at least one primal optimal solution.



CONIC PROBLEMS

e A conic problem is to minimize a convex func-
tion f : R? +— (—o0,00] subject to a cone con-
straint.
e The most useful /popular special cases:

— Linear-conic programming

— Second order cone programming

— Semidefinite programming

involve minimization of a linear function over the
intersection of an affine set and a cone.

e (Can be analyzed as a special case of Fenchel
duality.

e There are many interesting applications of conic
problems, including in discrete optimization.



CONIC DUALITY

e Consider minimizing f(x) over z € C, where f :
R" — (—o0, 0] is a closed proper convex function
and C is a closed convex cone in R".

e We apply Fenchel duality with the definitions

fi(z) = f(), f2($):{go Ei;g’

The conjugates are

* B ro * B ;[0 ifAeCF,
fl(/\)—mseugn{/\w f(w)},fz(/\)—szgx\w—{oo it & O

where C* = {\ | Nz <0,V x € C}.
e The dual problem is

minimize f*(\)

subject to A € é,
where f* is the conjugate of f and
C={\|Ne>0,VzelC}

C and —C are called the dual and polar cones.
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CONIC DUALITY THEOREM

e Assume that the optimal value of the primal
conic problem is finite, and that

ri(dom(f)) Nri(C) # O.

Then, there is no duality gap and the dual problem
has an optimal solution.

e Using the symmetry of the primal and dual
problems, we also obtain that there is no duality
gap and the primal problem has an optimal solu-
tion if the optimal value of the dual conic problem
is finite, and

ri(dom(f*)) Nri(C) # @.
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LINEAR CONIC PROGRAMMING

e Let f be linear over its domain, i.e.,

cdrx iftxelX,
f(x)_{oo if v ¢ X,

where c is a vector, and X = b+ S is an affine set.

e Primal problem is

minimize c'x

subject to x —be S, z e (.

e We have
f*(A) = sup (A —c)'z =sup(A —c¢)/(y +b)
r—besS yeSs
_ (A=¢c)b ifA—ce S,
00 ifA\—c¢S?.

e Dual problem is equivalent to
minimize b\
subject to A—ce S+, xeC.

o If X Nri(C) = O, there is no duality gap and
there exists a dual optimal solution.
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ANOTHER APPROACH TO DUALITY

e Consider the problem

minimize f(z)

subject to = € X, gij(zr) <0, j=1,...,r

and perturbation fn p(u) = inf,cx, g(z)<u f(7)

e Recall the MC/MC framework with M = epi(p).
Assuming that p is convex and f* < oo, by 1st
MC/MC theorem, we have f* = ¢* if and only if
p is lower semicontinuous at 0.

e Duality Theorem: Assume that X, f, and g;
are closed convex, and the feasible set is nonempty
and compact. Then f* = ¢* and the set of optimal
primal solutions is nonempty and compact.

Proof: Use partial minimization theory w/ the
function

’ 00 otherwise.

p is obtained by the partial minimization:

p(u) = xlen&gn F(x,u).

Under the given assumption, p is closed convex.
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