LECTURE 10
LECTURE OUTLINE

e Min Common/Max Crossing Th. III

e Nonlinear Farkas Lemma/Linear Constraints
e Linear Programming Duality

e Convex Programming Duality

e Optimality Conditions
Reading: Sections 4.5, 5.1,5.2, 5.3.1, 5.3.2

Recall the MC/MC Theorem II: If —co < w*
and

0 € ri(D) = {u | there exists w € R with (u,w) € M}

then ¢* = w* and there exists u s. t. q¢(u) = ¢*.

All figures are courtesy of Athena Scientific, and are used with permission.
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MC/MC TH. III - POLYHEDRAL

e Consider the MC/MC problems, and assume
that —oo < w* and:

(1) M is a “horizontal translation” of M by —P,

M =M — {(u,0) | u € P},

where P: polyhedral and M: convex.

=Y
=Y

=Y

0

(2) We have 1i(D) N P # @, where

~

D= {u | there exists w € R with (u,w) € M}

Then g* = w*, there is a max crossing solution,

and all max crossing solutions 7 satisfy n'd < 0
for all d € Rp.

e Comparison with Th. II: Since D = D — P,
the condition 0 € ri(D) of Theorem II is

~

ti(D) N1i(P) # O



PROOF OF MC/MC TH. III

e Consider the disjoint convex sets C1 = {(u,v) |
v > w for some (u,w) € M} and Co = {(u,w*) |
u € P} [u € P and (u,w) e M with w* > w
contradicts the definition of w*]

e Since (2 is polyhedral, there exists a separat-
ing hyperplane not containing C', i.e., a (@1, 3) #
(0,0) such that

Bw*+wz< pv+p'z, V(r,o)eC, VzeP

inf {fv+pz}< sup {Bv+p'z}
(z,v)€C1 (z,v)eC1
Since (0, 1) is a direction of recession of C, we see
that 8 > 0. Because of the relative interior point
assumption, # # 0, so we may assume that G = 1.
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PROOF (CONTINUED)

e Hence,

w*+ @z < inf {v+7'u}, VzeP,
(u,v)eCy

so that

w* < inf v+ (u— 2
o (u,v)ECl,zEP{ H ( )}

= inf  {v+7u}
(w,v)eM—P

= inf {v+7'u}
(u,v)eEM

= q(p)
Using ¢* < w* (weak duality), we have q(f) =

Proof that all max crossing solutions 1 sat-
isfy i'd < 0 for all d € Rp: follows from

— f _1_ / -
a(p) = if g pl(u = 2)}

so that q(u) = —o0 if /d > 0. Q.E.D.

e Geometrical intuition: every (0, —d) with d €
Rp, is direction of recession of M.
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MC/MC TH. III - A SPECIAL CASE

e Consider the MC/MC framework, and assume:

(1) For a convex function f : ™ — (—o0, 00|,
an r X m matrix A, and a vector b € R":

M = {(u,w) | for some (z,w) € epi(f), Az —b < u}
so M = M + Positive Orthant, where

M = {(Az —b,w) | (z,w) € epi(f)}

w ‘ p(u)‘: Amiilgguf(x)
. (1,1)
epi(f) »
b e
(z*, w*) | ’ g(u)
T T - —— C —
<« |0 T 0 U 0 U
Ax < b

{(u, w) | p(u) < w} C M C epi(p)

(2) There is an T € ri(dom(f)) s. t. AT —b < 0.
Then ¢* = w* and thereis a p > 0 with q(u) = ¢*.

e Also M = M = epi(p), where p(u) = inf 4 _p<y f().
e We have w* = p(0) = inf ap—p<0 f(2).
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NONL. FARKAS’ L. - POLYHEDRAL ASSUM.

e Let X C R be convex, and f: X — R and g, :
Rr— R, 7 =1,...,r, be linear so g(z) = Az — b
for some A and b. Assume that

f(x) >0, VrelX with Az —b5<0
Let
Q* = {,u >0, f(z)+p/' (Az—b) >0,V € X}.

Assume that there exists a vector T € ri(X) such
that Ax — b < 0. Then * is nonempty.

Proof: As before, apply special case of MC/MC
Th. III of preceding slide, using the fact w* > 0,
implied by the assumption.

wih

M = {(u,w) | Az — b < u, for some (z,w) € epi(f)}
" ——




(LINEAR) FARKAS’ LEMMA

e Let A be an m x n matrix and ¢ € ™. The
system Ay = ¢, y > 0 has a solution if and only if

Az <0 = c'r < 0. (*)

e Alternative/Equivalent Statement: If P =

cone{ai,...,an}, wherea, ..., a, are the columns
of A, then P = (P*)* (Polar Cone Theorem).

Proof: If y € R™ is such that Ay = ¢, y > 0, then
y'A'x = 'x for all z € ®™ which implies Eq. (*).

Conversely, apply the Nonlinear Farkas’ Lemma,
with f(x) = —cz, g(z) = A’x, and X = Rm.
Condition (*) implies the existence of y > 0 such
that

—cx+ pWAx >0, Ve Rm,
or equivalently
(Ap—c)'z >0, Vo eRm,

or Au = c.



LINEAR PROGRAMMING DUALITY

e (onsider the linear program

minimize c'x

subject to a’x >b;, j=1,...,m7,

where c € 7, a; e **, and b; e R, 7 =1,...,r.

e The dual problem is

maximize b u

subject to Zajuj =c, pu=>0.
j=1

e Linear Programming Duality Theorem:

(a) If either f* or ¢* is finite, then f* = ¢* and
both the primal and the dual problem have
optimal solutions.

(b) If f* = —o0, then ¢* = —o0.
(c¢) If g¢* = oo, then f* = oo.

Proof: (b) and (c) follow from weak duality. For
part (a): If f* is finite, there is a primal optimal
solution z*, by existence of solutions of quadratic
programs. Use Farkas’ Lemma to construct a dual
feasible p* such that ¢’a* = b’p* (next slide).
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PROOF OF LP DUALITY (CONTINUED)

m*

a1 €2

¢ = pia1 + pzaz

Feasible Set

Cone D (translated to z*)

e Let x* be a primal optimal solution, and let
J ={j|ax* =b;}. Then, ¢’y > 0 for all y in the
cone of “feasible directions”

D={ylay>0,VjecJ}

By Farkas’ Lemma, for some scalars p; = 0, ¢ can
be expressed as

c=) waj, w20, Vjied pi=0,Yj¢J
j=1

Taking inner product with z*, we obtain c/x* =
b’ 11*, which in view of ¢* < f*, shows that ¢* = f*
and that p* is optimal.
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LINEAR PROGRAMMING OPT. CONDITIONS

A pair of vectors (z*, u*) form a primal and dual
optimal solution pair if and only if x* is primal-
feasible, p* is dual-feasible, and

i (b —alx*) =0, Vi=1,...,r. (%)

Proof: If x* is primal-feasible and p* is dual-
feasible, then

/

b’,uJ*:ij,u;%— C—ZCLJ'/L; x*
=1 J=1 ()

= cz* + Z,U;(bj — alxz*)
j=1

So if Eq. (*) holds, we have b’u* = ¢/x*, and weak
duality implies that x* is primal optimal and p*
is dual optimal.

Conversely, if (x*, 4*) form a primal and dual
optimal solution pair, then x* is primal-feasible,
1* is dual-feasible, and by the duality theorem, we
have b'u* = ¢’z*. From Eq. (**), we obtain Eq.

(%)-
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CONVEX PROGRAMMING

Consider the problem

minimize f(x)

subject to x € X, gj(z) <0, j=1,...,r7,
where X C R” is convex, and f : X — R and
g; : X — I are convex. Assume f*: finite.

e Recall the connection with the max crossing
problem in the MC/MC framework where M =
epi(p) with

— inf
p(u) e Suf(iv)

e (onsider the Lagrangian function

Lz, p) = f(z) + wg(x),
the dual function

o(1) = {iﬂfxeX L(z,p) if p> Q,
—00 otherwise

and the dual problem of maximizing inf,cx L(x, 1)
over u > 0.
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STRONG DUALITY THEOREM

e Assume that f* is finite, and that one of the
following two conditions holds:

(1) There exists T € X such that g(T) < 0.

(2) The functions g;, j = 1,...,r, are affine, and
there exists T € ri(X) such that g(x) < 0.

Then ¢* = f* and the set of optimal solutions of
the dual problem is nonempty. Under condition
(1) this set is also compact.

e Proof: Replace f(x) by f(xz) — f* so that
fx) — f*>0foral z € X w/ g(z) < 0. Ap-
ply Nonlinear Farkas’ Lemma. Then, there exist
p; 20, s.t.

f* < fla)+ ) wigilx), VzeX
j=1
e [t follows that

< inf {f@)+pg@)y < inf fla) = f*

r€X  xzeX,g(x)<0

Thus equality holds throughout, and we have

( )

f*=inf § f(z)+ Y wigi(x) p = q(p*)
j=1 ,

reX

\



QUADRATIC PROGRAMMING DUALITY

e (onsider the quadratic program
minimize 1x'Qx 4+ c'x
subject to Ax < b,
where () is positive definite.

e If f* is finite, then f* = ¢* and there exist
both primal and dual optimal solutions, since the
constraints are linear.

e C(alculation of dual function:

q(p) = inf {32'Qu + 'z + p/'(Az — b)}
ek

The infimum is attained for x = —Q—1(c + A’p),
and, after substitution and calculation,

g(p) = =3 AQ T A — /' (b+ AQ 1) — 5/Q e

e The dual problem, after a sign change, is
minimize iu/'Pu+1t'p
subject to u > 0,

where P = AQ-1A’ and t = b+ AQlc.
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OPTIMALITY CONDITIONS

e We have ¢g* = f*, and the vectors x* and u* are
optimal solutions of the primal and dual problems,
respectively, iff z* is feasible, u* > 0, and

r* cargmin L(z, p*),  pjgi(z*) =0, Vj
(1)
Proof: If ¢* = f*, and x*, u* are optimal, then

f*=q* =q(p*) = :Lig‘(L(w,u*) < L(z*, pu*)

= f(z*) + Zu;fgj(a?*) < f(z*),

where the last inequality follows from p7 > 0 and
g;i(x*) <0 for all j. Hence equality holds through-
out above, and (1) holds.

Conversely, if z*, u* are feasible, and (1) holds,

q(p) = inf L(z, p*) = L(z*, p*)

= fx*) + Y uigi(a*) = f(a*),

j=1
so q* = f*, and x*, u* are optimal. Q.E.D.
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QUADRATIC PROGRAMMING OPT. COND.

For the quadratic program
minimize 1lx/Qx 4+ c'x
subject to Ax <b,

where () is positive definite, (z*, u*) is a primal
and dual optimal solution pair if and only if:

e Primal and dual feasibility holds:

Ax* < b, uw* >0

e Lagrangian optimality holds [x* minimizes L(x, u*)
over x € R7]. This yields

Tr* = _Q_1(0+A,M*)

e Complementary slackness holds [(Ax* —b)' u* =
0]. It can be written as

p; >0 = ayz* =bj, Vj=1,...,m

where a is the jth row of A, and b; is the jth

component of b.
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LINEAR EQUALITY CONSTRAINTS

e The problem is

minimize f(x)
subject to z € X, g¢g(x) <0, Az =0,

where X is convex, g(z) = (g1(z), ... ,gr(aﬁ))/, f:
X—XRandg;: X — R, j=1,...,r, are convex.

e (Convert the constraint Az = b to Ax < b

and —Ax < —b, with corresponding dual variables
AT >0and A= > 0.

e The Lagrangian function is
fle) +pwg(x) + (AT — A7) (Az - ),

and by introducing a dual variable A = AT — A—,
with no sign restriction, it can be written as

Lz, p, A) = f(x) + wg(x) + N(Az — b).
e The dual problem is

maximize q(u, ) = ingf L(x, p, A)
Te

subject to u >0, A € ®m,
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DUALITY AND OPTIMALITY COND.

e Pure equality constraints:

(a) Assume that f*: finite and there exists T €
ri(X) such that Az = b. Then f* = ¢* and
there exists a dual optimal solution.

(b) f* = q*, and (x*, \*) are a primal and dual
optimal solution pair if and only if x* is fea-
sible, and

z* € arg min (2, A*)

Note: No complementary slackness for equality
constraints.

e Linear and nonlinear constraints:

(a) Assume f*: finite, that there exists T € X
such that AT = b and ¢g(Z) < 0, and that
there exists & € ri(X) such that Az = b.
Then g* = f* and there exists a dual optimal
solution.

(b) f* = q*, and (z*, u*, \*) are a primal and
dual optimal solution pair if and only if z*
is feasible, u* > 0, and

z* € argmin L(z, p*, A*), pjg;(z*) =0, ¥V
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