LECTURE 8
LECTURE OUTLINE

e Review of conjugate convex functions
e Min common/max crossing duality

e Weak duality

e Special cases

Reading: Sections 1.6, 4.1, 4.2

All figures are courtesy of Athena Scientific, and are used with permission.
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CONJUGACY THEOREM

f*(y) = sup {a'y — f(z)}, y € Rn
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inf {f(z) —z'y} = —f*(y)
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A FEW EXAMPLES

e [, and [, norm conjugacy, where % + % =1

1 mn 1 mn
fl@)y= =) lmlr,  fxy)==> |yl
p 1=1 q =1

e Conjugate of a strictly convex quadratic

1
flx) = 5:1:’@90 +a'z + 0,

(y—a)Q ty—a) -0

f*(y) = %

e (Conjugate of a function obtained by invertible
linear transformation /translation of a function p

f(z) =p(A(x —¢)) +a'z +,

() =a((A)~1(y —a)) + y +d,
where ¢ is the conjugate of p and d = —(c’a + b).



SUPPORT FUNCTIONS

e Conjugate of indicator function dx of set X

ox(y) = sup y'z
reX

is called the support function of X.

e To determine ox(y) for a given vector y, we
project the set X on the line determined by y,
we find z, the extreme point of projection in the
direction y, and we scale by setting

ox(y) = [1z] - ||yl
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e epi(ox) is a closed convex cone.

e The sets X, cl(X), conv(X), and cl(conv(X))
all have the same support function (by the conju-
gacy theorem).



SUPPORT FN OF A CONE - POLAR CONE

e The conjugate of the indicator function ¢ is
the support function, oc(y) = sup,cc y'z.

e If C is a cone,

© oo otherwise

i.e., o¢ is the indicator function dc+ of the cone
C={y|yxz<0, VxelC}

This is called the polar cone of C.

e By the Conjugacy Theorem the polar cone of C'*
is cl(conv(C)). This is the Polar Cone Theorem.

e Special case: If C' = cone({m, e ar}), then
Cx={z|ax<0,j=1,...,r}

e Farkas’ Lemma: (C*)* =C.

e True because C is a closed set [cone({a1, ..., ar})
is the image of the positive orthant {a | a > 0}
under the linear transformation that maps o to
> ', ajaj], and the image of any polyhedral set

J
under a linear transformation is a closed set.
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EXTENDING DUALITY CONCEPTS

e From dual descriptions of sets

A union of points An intersection of halfspaces

e To dual descriptions of functions (applying
set duality to epigraphs)

A (—y,1)

e We now go to dual descriptions of problems,
by applying conjugacy constructions to a simple
generic geometric optimization problem
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MIN COMMON / MAX CROSSING PROBLEMS

e We introduce a pair of fundamental problems:
e Let M be a nonempty subset of nt+1

(a) Min Common Point Problem: Consider all
vectors that are common to M and the (n+
1)st axis. Find one whose (n + 1)st compo-
nent 1S minimum.

(b) Max Crossing Point Problem: Consider non-
vertical hyperplanes that contain M in their
“upper” closed halfspace. Find one whose
crossing point of the (n + 1)st axis is maxi-
mum.
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MATHEMATICAL FORMULATIONS

e Optimal value of min common problem:

w* = Inf w
(0,w)eM

N\ Dual function value S LI UG
\ ual function value g(u) (u,‘w)eM{ e

Hyperplane H, ¢ = {(u, w) | w+ p'u = f}

>

of » u

e Math formulation of max crossing prob-
lem: Focus on hyperplanes with normals (u, 1)
whose crossing point £ satisfies

£ <w+ pu, V (u,w) € M

Max crossing problem is to maximize £ subject to
g < inf(uaw)EM{w T ,u’u}, JURS %n) or

maximize q(u) 2 inf {w+ pu}
(uw,w)eM

subject to u € Rn.
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GENERIC PROPERTIES - WEAK DUALITY

e Min common problem

inf w
(0,w)eM

e Max crossing problem

maximize q(u) =, i%f M{w + p'u}
u, W) e

subject to u € Rn.

N\ Dual function value q(p) = inf {’u.r + '}
(u,w)eM

Hyperplane Hy, ¢ = {(u,w) | w + p'u = £}

.

o] > ‘u,r

e Note that ¢ is concave and upper-semicontinuous
(inf of linear functions).

e Weak Duality: For all u € R~

— inf / < inf — ¥
ar) (u,iu%EM{w T pup (o,fiur;eMw o

so maximizing over u € ", we obtain ¢* < w*.

e We say that strong duality holds if ¢* = w*.



CONNECTION TO CONJUGACY

e An important special case:

M = epi(p)

where p : ®” — [—00, 00]. Then w* = p(0), and

= inf wtp'ut = inf w+p'u b,
1) (u,w)éepi(p){ puy {(u,w)lp(U)Sw}{ g
and finally

o) = inf {p(u) + u}
ue

(1) p(u) A




GENERAL OPTIMIZATION DUALITY

e Consider minimizing a function f : ®" — [—o0, c0].
o Let F': R+ — |—00, 00] be a function with

f(x) = F(x,0), Ve R
e Consider the perturbation function

p(u) = inf F(z,u)

and the MC/MC framework with M = epi(p)

e The min common value w* is

a— = inf F = inf
wr=p(0) = inf F(z,0)= inf f(z)
e The dual function is

q(p) = uiggr{ﬂuw’“} —~ (w)igg%nw{F (0, u)+p'u }

so q(pn) = —F*(0, —pu), where F* is the conjugate
of F', viewed as a function of (z,u)

e We have
*— su = — lnf F* O7 - — — ll”lf F* 07 )
T = sup q(H) Jnf (0, —u) Jnf (0, w)

and weak duality has the form

VT T =y 0w =
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CONSTRAINED OPTIMIZATION

e Minimize f : " — R over the set
C={zeX|g(x) <0},
where X C i and g : k"™ — R".
e Introduce a “perturbed constraint set”
Cu={z€X|g(x)<u}, u € R,

and the function

F(x,u) = {f(a;') it x € Cly,

00 otherwise,

which satisfies F'(z,0) = f(x) for all x € C.

e Consider perturbation function

— inf F inf
p(v) = inf F(z,u)= e Suf(f'f),

and the MC/MC framework with M = epi(p).
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CONSTR. OPT. - PRIMAL AND DUAL FNS

e Perturbation function (or primal function)

plu)= _inf  f(z),

r€X, g(z)<u

M epi(p

/

w* = p(0) \ﬁ/]l

e Introduce L(z,u) = f(x) + pw/g(x). Then

(9(z), f(z)) |z € X}

g(p) = inf {p(u)+ p'u}
ueR”

_ inf {f(z)+ p'u}

ueR”, z€X, g(x)<lu

_ {infxgx L(x, ) if p >0,
— 00 otherwise.
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LINEAR PROGRAMMING DUALITY

e (onsider the linear program

minimize c'x

subject to a’x >b;, j=1,...,m7,

where c € 7, a; e **, and b; e R, 7 =1,...,r.
e For i1 > 0, the dual function has the form

— inf L
q(u) = inf Lz, p)

N

%
— xieng{n oy + Zl ,uj(bj — a;x) >
\ J=

J
—o0 otherwise

— { bllu lf Z;:l a’]:u] —= G,

e Thus the dual problem is

maximize b0’

subject to Zajuj =c, pu=>0.
j=1
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