
LECTURE 6

LECTURE OUTLINE

• Nonemptiness of closed set intersections

− Simple version

− More complex version

• Existence of optimal solutions

• Preservation of closure under linear transforma-
tion

• Hyperplanes

All figures are courtesy of Athena Scientific, and are used with permission.
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ROLE OF CLOSED SET INTERSECTIONS I

• A fundamental question: Given a sequence
of nonempty closed sets {Ck} in �n with Ck+1 ⌦
Ck for all k, when is ⌫ k=0Ck nonempty?

• Set intersection theorems are significant in at
least three major contexts, which we will discuss
in what follows:

Does a function f : �n → (−⇣,⇣] attain a
minimum over a set X?

This is true if and only if

Intersection of nonempty x ⌘ X | f(x) ⌥ ⇤k

is nonempty.

⇤ ⌅

◆

Optimal
Solution

Level Sets of f

X
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ROLE OF CLOSED SET INTERSECTIONS II

If C is closed and A is a matrix, is A C
closed?

x

Nk

AC

C

y yk+1 yk

Ck

• If C1 and C2 are closed, is C1 + C2 closed?
− This is a special case.

− Write
C1 + C2 = A(C1 ⇤ C2),

where A(x1, x2) = x1 + x2.

3



CLOSURE UNDER LINEAR TRANSFORMATION

• Let C be a nonempty closed convex, and let
A be a matrix with nullspace N(A). Then A C is
closed if RC ⌫N(A) = {0}.
Proof: Let {yk} ⌦ A C with yk → y. Define the
nested sequence Ck = C ⌫Nk, where

Nk = {x | Ax ⌘Wk}, Wk =
⇤
z | �z−y� ⌥ �yk−y�

We have RNk = N(A), so Ck is compact, and

⌅

{Ck} has nonempty intersection. Q.E.D.

x

Nk

AC

C

y yk+1 yk

Ck

• A special case: C1 + C2 is closed if C1, C2

are closed and one of the two is compact. [Write
C1+C2 = A(C1⇤C2), where A(x1, x2) = x1+x2.]

• Related theorem: AX is closed if X is poly-
hedral. To be shown later by a more refined method.
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ROLE OF CLOSED SET INTERSECTIONS III

• Let F : �n+m → (−⇣,⇣] be a closed proper
convex function, and consider

f(x) = inf F (x, z)
z⌦�m

• If F (x, z) is closed, is f(x) closed?
− Critical question in duality theory.

• 1st fact: If F is convex, then f is also convex.

• 2nd fact:

P
�
epi(F )

⇥
⌦ epi(f) ⌦ cl

⌥
P
�
epi(F )

⇥�
,

where P (·) denotes projection on the space of (x,w),
i.e., for any subset S of �n+m+1, P (S) = (x,w) |
(x, z, w) ⌘ S

⇤
⌅
.

• Thus, if F is closed and there is structure guar-
anteeing that the projection preserves closedness,
then f is closed.

• ... but convexity and closedness of F does not
guarantee closedness of f .

◆
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PARTIAL MINIMIZATION: VISUALIZATION

• Connection of preservation of closedness under
partial minimization and attainment of infimum
over z for fixed x.

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

• Counterexample: Let

� 
e− xz if x ≥ 0, zF (x, z) = ≥ 0,
⇣ otherwise.

• F convex and closed, but

0 if x > 0,
f(x) = inf F (x, z) =

z⌦�

✏
1 if x = 0,
⇣ if x < 0,

is not closed.
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PARTIAL MINIMIZATION THEOREM

• Let F : �n+m → (−⇣,⇣] be a closed proper
convex function, and consider f(x) = infz⌦�m F (x, z).

• Every set intersection theorem yields a closed-
ness result. The simplest case is the following:

• Preservation of Closedness Under Com-
pactness: If there exist x ⌘ �n, ⇤ ⌘ � such that
the set

⇤
z | F (x, z) ⌥ ⇤

is nonempty and compact, then f

⌅

is convex, closed,
and proper. Also, for each x ⌘ dom(f), the set of
minima of F (x, ) is nonempty and compact.

◆

·

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w
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F (x, z)

f(x) = inf
z

F (x, z)

epi(f)
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MORE REFINED ANALYSIS - A SUMMARY

• We noted that there is a common mathematical
root to three basic questions:

− Existence of of solutions of convex optimiza-
tion problems

− Preservation of closedness of convex sets un-
der a linear transformation

− Preservation of closedness of convex func-
tions under partial minimization

• The common root is the question of nonempti-
ness of intersection of a nested sequence of closed
sets

• The preceding development in this lecture re-
solved this question by assuming that all the sets
in the sequence are compact

• A more refined development makes instead var-
ious assumptions about the directions of recession
and the lineality space of the sets in the sequence

• Once the appropriately refined set intersection
theory is developed, sharper results relating to the
three questions can be obtained

• The remaining slides up to hyperplanes sum-
marize this development as an aid for self-study
using Sections 1.4.2, 1.4.3, and Sections 3.2, 3.3
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ASYMPTOTIC SEQUENCES

• Given nested sequence {Ck} of closed convex
sets, {xk} is an asymptotic sequence if

xk ⌘ Ck, xk = 0, k = 0, 1, . . .

x�xk� → ⇣ k d
, →�xk� �d�

where d is a nonzero common direction of recession
of the sets Ck.

• As a special case we define asymptotic sequence
of a closed convex set C (use Ck ⌃ C).

• Every unbounded {xk} with xk ⌘ Ck has an
asymptotic subsequence.

• {xk} is called retractive if for some k, we have

x d C , k k.

✓

k − ⌘ k  ≥

x0

x1
x2

x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence
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RETRACTIVE SEQUENCES

• A nested sequence {Ck} of closed convex sets
is retractive if all its asymptotic sequences are re-
tractive.
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(a) Retractive Set Sequence (b) Nonretractive Set Sequence

Intersection
k=0Ck Intersection

k=0Ck

d

d

0

0

• A closed halfspace (viewed as a sequence with
identical components) is retractive.

• Intersections and Cartesian products of retrac-
tive set sequences are retractive.

• A polyhedral set is retractive. Also the vec-
tor sum of a convex compact set and a retractive
convex set is retractive.

• Nonpolyhedral cones and level sets of quadratic
functions need not be retractive.
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SET INTERSECTION THEOREM I

Proposition: If {Ck} is retractive, then ⌫ k=0 Ck

is nonempty.

• Key proof ideas:

(a) The intersection ⌫ k=0 Ck is empty iff the se-
quence {xk} of minimum norm vectors of Ck

is unbounded (so a subsequence is asymp-
totic).

(b) An asymptotic sequence {xk} of minimum
norm vectors cannot be retractive, because
such a sequence eventually gets closer to 0
when shifted opposite to the asymptotic di-
rection.

x0

1
x2

x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence

x

11



SET INTERSECTION THEOREM II

Proposition: Let {Ck} be a nested sequence of
nonempty closed convex sets, and X be a retrac-
tive set such that all the sets Ck = X ⌫ Ck are
nonempty. Assume that

RX ⌫R ⌦ L,

where

R = ⌫ k=0RCk , L = ⌫ k=0LCk

Then {Ck} is retractive and ⌫ k=0 Ck is nonempty.

• Special cases:

− X = �n, R = L (“cylindrical” sets Ck)

− RX⌫R = {0} (no nonzero common recession
direction of X and ⌫kCk)

Proof: The set of common directions of recession
of Ck is RX ⌫ R. For any asymptotic sequence
{xk} corresponding to d ⌘ RX ⌫R:

(1) xk − d ⌘ Ck (because d ⌘ L)

(2) xk − d ⌘ X (because X is retractive)

So Ck is retractive.{ }
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NEED TO ASSUME THAT X IS RETRACTIVE

CkCk+1

X

CkCk+1

X

Consider ⌫ k=0 Ck, with Ck = X ⌫ Ck

• The condition RX ⌫R ⌦ L holds

• In the figure on the left, X is polyhedral.

• In the figure on the right, X is nonpolyhedral
and nonretrative, and

⌫ k=0 Ck = Ø
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LINEAR AND QUADRATIC PROGRAMMING

• Theorem: Let

f(x) = x⇧Qx + c⇧x, X = {x | a⇧jx + bj ⇤ 0, j = 1, . . . , r}

where Q is symmetric positive semidefinite. If the
minimal value of f over X is finite, there exists a
minimum of f over X.

Proof: (Outline) Write

Set of Minima = ⌫ k=0

�
X⌫ {x | x�Qx+c�x ⌥ ⇤k}

with

⇥

⇤k ↓ f⇤ = inf f(x).
x⌦X

Verify the condition RX ⌫R ⌦ L of the preceding
set intersection theorem, where R and L are the
sets of common recession and lineality directions
of the sets

{x | x�Qx + c�x ⌥ ⇤k}

Q.E.D.
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CLOSURE UNDER LINEAR TRANSFORMATION

• Let C be a nonempty closed convex, and let A
be a matrix with nullspace N(A).

(a) A C is closed if RC ⌫N(A) ⌦ LC .

(b) A(X ⌫ C) is closed if X is a retractive set
and

RX ⌫RC ⌫N(A) ⌦ LC ,

Proof: (Outline) Let {yk} ⌦ A C with yk → y.
We prove ⌫ k=0Ck = Ø, where Ck = C ⌫Nk, and

Nk = {x | Ax ⌘Wk}, Wk = z | �z−y� ⌥ �yk−y�

✓
⇤ ⌅

x

Nk

AC

C

y yk+1 yk

Ck

• Special Case: AX is closed if X is polyhedral.
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NEED TO ASSUME THAT X IS RETRACTIVE

!"# $%

$

#

$

#

!"# $%

&"!% &"!%

C C

N(A) N(A)

X

X

A(X  C) A(X  C)

Consider closedness of A(X ⌫ C)

• In both examples the condition

RX ⌫RC ⌫N(A) ⌦ LC

is satisfied.

• However, in the example on the right, X is not
retractive, and the set A(X ⌫ C) is not closed.
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CLOSEDNESS OF VECTOR SUMS

• Let C1, . . . , Cm be nonempty closed convex sub-
sets of �n such that the equality d1 + · · ·+dm = 0
for some vectors di ⌘ RCi implies that di = 0 for
all i = 1, . . . ,m. Then C1 + · · · + Cm is a closed
set.

• Special Case: If C1 and −C2 are closed convex
sets, then C1 − C2 is closed if RC1 ⌫RC2 = {0}.
Proof: The Cartesian product C = C1⇤ · · ·⇤Cm

is closed convex, and its recession cone is RC =
RC1 ⇤ · · ·⇤RCm . Let A be defined by

A(x1, . . . , xm) = x1 + · · · + xm

Then
A C = C1 + · · · + Cm,

and

N(A) =
⇤
(d1, . . . , dm) | d1 + · · · + dm = 0

RC∩N(A) =

⌅

⇤
(d

1

, . . . , dm) | d
1

+· · ·+dm = 0, di ⌃ RCi
, ⌥ i

By the given condition, RC⌫N(A) = {0}, so A C

⌅

is closed. Q.E.D.
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HYPERPLANES

x

Negative Halfspace

Positive Halfspace
{x | ax ⇥ b}

{x | ax ≤ b}

Hyperplane
{x | ax = b} = {x | ax = ax}

a

• A hyperplane is a set of the form {x | a�x = b},
where a is nonzero vector in �n and b is a scalar.

• We say that two sets C1 and C2 are separated
by a hyperplane H = {x | a�x = b} if each lies in a
different closed halfspace associated with H, i.e.,

either a�x1 ⌥ b ⌥ a�x2,  x1 ⌘ C1,  x2 ⌘ C2,

or a�x2 ⌥ b ⌥ a�x1,  x1 ⌘ C1,  x2 ⌘ C2

• If x belongs to the closure of a set C, a hyper-
plane that separates C and the singleton set {x}
is said be supporting C at x.
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VISUALIZATION

• Separating and supporting hyperplanes:

a

(a)

C1 C2

x

a

(b)

C

• A separating {x | a�x = b} that is disjoint from
C1 and C2 is called strictly separating:

a�x1 < b < a�x2, x1 C1, x2 C2 ⌘  ⌘

(a)

C1 C2

x

a

(b)

C1

C2
x1

x2
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SUPPORTING HYPERPLANE THEOREM

• Let C be convex and let x be a vector that is
not an interior point of C. Then, there exists a
hyperplane that passes through x and contains C
in one of its closed halfspaces.

a

C

x

x0

x1

x2
x3

x̂0

x̂1

x̂2
x̂3

a0

a1

a2
a3

Proof: Take a sequence {xk} that does not be-
long to cl(C) and converges to x. Let x̂k be the
projection of xk on cl(C). We have for all x ⌘
cl(C)

a�kx ≥ a�kxk,  x ⌘ cl(C),  k = 0, 1, . . . ,

where ak = (x̂k − xk)/�x̂k − xk�. Let a be a limit
point of ak , and take limit as k . Q.E.D.{ } →⇣
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SEPARATING HYPERPLANE THEOREM

• Let C1 and C2 be two nonempty convex subsets
of �n. If C1 and C2 are disjoint, there exists a
hyperplane that separates them, i.e., there exists
a vector a = 0 such that

a�x1 ⌥ a�x2,  x1 ⌘ C1,  x2 ⌘ C2.

Proof: Consider the convex set

C1 − C2 = {x2 − x1 | x1 ⌘ C1, x2 ⌘ C2}

Since C1 and C2 are disjoint, the origin does not
belong to C1 − C2, so by the Supporting Hyper-
plane Theorem, there exists a vector a = 0 such
that

0 ⌥ a�x,  x ⌘ C1 − C2,

which is equivalent to the desired relation. Q.E.D.

✓

✓
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STRICT SEPARATION THEOREM

• Strict Separation Theorem: Let C1 and C2

be two disjoint nonempty convex sets. If C1 is
closed, and C2 is compact, there exists a hyper-
plane that strictly separates them.

(a)

C1 C2

x

a

(b)

C1

C2
x1

x2

Proof: (Outline) Consider the set C1−C2. Since
C1 is closed and C2 is compact, C1−C2 is closed.
Since C1 ⌫ C2 = Ø, 0 ⌘/ C1 − C2. Let x1 − x2

be the projection of 0 onto C1 − C2. The strictly
separating hyperplane is constructed as in (b).

• Note: Any conditions that guarantee closed-
ness of C1 − C2 guarantee existence of a strictly
separating hyperplane. However, there may exist
a strictly separating hyperplane without C1 − C2

being closed.
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