LECTURE 6

LECTURE OUTLINE

e Nonemptiness of closed set intersections
— Simple version

— More complex version
e Existence of optimal solutions

e Preservation of closure under linear transforma-
tion

e Hyperplanes

All figures are courtesy of Athena Scientific, and are used with permission.



ROLE OF CLOSED SET INTERSECTIONS I

e A fundamental question: Given a sequence
of nonempty closed sets {C)} in R with Cyy1 C
C for all £, when is N2 C nonempty?

e Set intersection theorems are significant in at
least three major contexts, which we will discuss
in what follows:

Does a function f : R" — (—o0,00] attain a
minimum over a set X7

This is true if and only if
Intersection of nonempty {z € X | f(z) < i}

1S nonempty.

Level Sets of f

Optimal
Solution



ROLE OF CLOSED SET INTERSECTIONS II

If C is closed and A is a matrix, is AC
closed?
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e If (' and (s are closed, is C; + (> closed?
— This is a special case.
— Write
Ch+Cy = A(Cl X 02)7

where A(x1,x2) = x1 + x2.



CLOSURE UNDER LINEAR TRANSFORMATION

e Let C be a nonempty closed convex, and let
A be a matrix with nullspace N(A). Then AC is
closed if Re " N(A) = {0}.

Proof: Let {yr} C AC with yr — 3. Define the
nested sequence C = C' N Ny, where

Ni ={z | Az € Wi}, Wi = {z]|lz=7| < llyx—7l }

We have Ry, = N(A), so Cy is compact, and
{C}} has nonempty intersection. Q.E.D.
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e A special case: (7 + (5 is closed if C, Cs
are closed and one of the two is compact. |[Write

C1+Cy = A(C1 xCy), where A(x1,x2) = x1+x2.]

e Related theorem: AX is closed if X is poly-
hedral. To be shown later by a more refined method.
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ROLE OF CLOSED SET INTERSECTIONS III

o Let F': Rntm — (—o0,00| be a closed proper
convex function, and consider

fa) = inf Flz,2)

o If F'(x,2) is closed, is f(x) closed?
— Ciritical question in duality theory.

e 1st fact: If F'is convex, then f is also convex.

e 2nd fact:
P(epi(F)) C epi(f) C cl (P(epi(F)))a

where P(-) denotes projection on the space of (x, w),
i.e., for any subset S of Rntm+1, P(S) = {(z,w) |

(z,z,w) € S}.
e Thus, if F'is closed and there is structure guar-

anteeing that the projection preserves closedness,
then f is closed.

e ... but convexity and closedness of F' does not
guarantee closedness of f.



PARTIAL MINIMIZATION: VISUALIZATION

e (Connection of preservation of closedness under
partial minimization and attainment of infimum
over z for fixed .

e Counterexample: Let

F(%Z):{e_\/E itz >0, 220,

00 otherwise.

e [ convex and closed, but

0 ifz>0,
f(:l:):ian(a:,z):{l if x =0,
EX oo if x <0,

is not closed.



PARTIAL MINIMIZATION THEOREM

o Let F: Rntm — (—o0, 00| be a closed proper
convex function, and consider f(z) = inf,cxm F(z, 2).

e Lvery set intersection theorem yields a closed-
ness result. The simplest case is the following:

e Preservation of Closedness Under Com-
pactness: If there exist T € ™, 7 € R such that
the set

12| F(7,2) <7}

is nonempty and compact, then f is convex, closed,
and proper. Also, for each x € dom(f), the set of
minima of F'(x,-) is nonempty and compact.

epi(f)

A v
f(z) = inf F(z,2) o — — -z f(z) = inf I(J‘Z) ’ o — — -z
Az
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MORE REFINED ANALYSIS - A SUMMARY

e We noted that there is a common mathematical
root to three basic questions:

— Existence of of solutions of convex optimiza-
tion problems

— Preservation of closedness of convex sets un-
der a linear transformation

— Preservation of closedness of convex func-
tions under partial minimization

e The common root is the question of nonempti-
ness of intersection of a nested sequence of closed
sets

e The preceding development in this lecture re-
solved this question by assuming that all the sets
in the sequence are compact

e A more refined development makes instead var-
ious assumptions about the directions of recession
and the lineality space of the sets in the sequence

e Once the appropriately refined set intersection
theory is developed, sharper results relating to the
three questions can be obtained

e The remaining slides up to hyperplanes sum-
marize this development as an aid for self-study
using Sections 1.4.2, 1.48.3, and Sections 3.2, 3.3



ASYMPTOTIC SEQUENCES

e Given nested sequence {C}} of closed convex
sets, {xy} is an asymptotic sequence if

xkEC’k, xk#O, k=0,1,...

T \ d
]l 4]l

k|| — oo,

where d is a nonzero common direction of recession
of the sets (Y.

e As a special case we define asymptotic sequence
of a closed convex set C (use C, = C).

e Every unbounded {x} with z; € C% has an
asymptotic subsequence.

o {x;} is called retractive if for some k, we have

xp —d € Cy, Vk>k.
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RETRACTIVE SEQUENCES

e A nested sequence {C}} of closed convex sets
is retractive if all its asymptotic sequences are re-
tractive.

A Intersection N2 Cy A Intersection N4 Chk
// //

z2

I

Co

(a) Retractive Set Sequence (b) Nonretractive Set Sequence

e A closed halfspace (viewed as a sequence with
identical components) is retractive.

e Intersections and Cartesian products of retrac-
tive set sequences are retractive.

e A polyhedral set is retractive. Also the vec-
tor sum of a convex compact set and a retractive
convex set 1s retractive.

e Nonpolyhedral cones and level sets of quadratic
functions need not be retractive.
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SET INTERSECTION THEOREM 1

Proposition: If {C}} is retractive, then N2 o Ck
1S nonempty.

e Key proof ideas:

(a) The intersection N2, C is empty iff the se-
quence {zr} of minimum norm vectors of Cj,
is unbounded (so a subsequence is asymp-
totic).

(b) An asymptotic sequence {xy} of minimum
norm vectors cannot be retractive, because
such a sequence eventually gets closer to 0
when shifted opposite to the asymptotic di-

rection.
X1
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SET INTERSECTION THEOREM I1

Proposition: Let {Cy} be a nested sequence of
nonempty closed convex sets, and X be a retrac-

tive set such that all the sets Cr = X N Ci are
nonempty. Assume that

RxNRCL,
where
R =N Rey,, L=n%,Lc,
Then {C}} is retractive and N, Cy, is nonempty.

e Special cases:
— X =R", R=L (“cylindrical” sets C)

— RxNR = {0} (no nonzero common recession
direction of X and NgCl)

Proof: The set of common directions of recession
of 'y is Rx N R. For any asymptotic sequence
{xy} corresponding to d € Rx N R:

(1) zp, —d € Cy (because d € L)
(2) zp —d € X (because X is retractive)

So {C}} is retractive.
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NEED TO ASSUME THAT X IS RETRACTIVE

N/—b' | Ml—> |

| | | |

g { v ' g I \ P
Crk+1 Ch. Ci+1  Ck

Consider N2, Cr, with Cr=XnC,

e The condition Rx N R C L holds
e In the figure on the left, X is polyhedral.

e In the figure on the right, X is nonpolyhedral
and nonretrative, and

NE2o Cr=0
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LINEAR AND QUADRATIC PROGRAMMING

e Theorem: Let
f(x) = 2'Qx + 'z, X:{a:|a;~a:—|—bj§0,j:1,...,r}

where () is symmetric positive semidefinite. If the
minimal value of f over X is finite, there exists a
minimum of f over X.

Proof: (Outline) Write
Set of Minima = N (XN {z | 2/Qz+c'z < i })

with
* = inf .
e | f* = inf f(z)
Verify the condition Rx N R C L of the preceding
set intersection theorem, where R and L are the

sets of common recession and lineality directions
of the sets

{z|2'Qx+ 'z < i}

Q.E.D.
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CLOSURE UNDER LINEAR TRANSFORMATION

e Let C be a nonempty closed convex, and let A
be a matrix with nullspace N(A).

(a) AC is closed if Re N N(A) C Lc¢.

(b) A(X NC) is closed if X is a retractive set
and

RxﬂRcﬂN(A)CL07

Proof: (Outline) Let {yx} C AC with yr — 7.
We prove N2 ,Cr # J, where C, = C'N Ny, and

Ny ={z | Az e Wi}, Wi ={z[|z=7| < lyu—7ll}
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e Special Case: AX is closed if X is polyhedral.
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NEED TO ASSUME THAT X IS RETRACTIVE

C C
A 7N A « \
N(A ‘
7(A) /( ) |
|
x
| | -
A(XNO) AXNC)
Consider closedness of A(X N C)

e In both examples the condition

RxNRcNN(A) C Le

is satisfied.

e However, in the example on the right, X is not
retractive, and the set A(X N ') is not closed.
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CLOSEDNESS OF VECTOR SUMS

e Let C1,...,C ), be nonempty closed convex sub-
sets of k™ such that the equality d1 +---+d;, =0
for some vectors d; € Rc, implies that d; = 0 for
all2 =1,...,m. Then C; +---+ C), is a closed
set.

e Special Case: If 'y and —Cs are closed convex
sets, then C1 — C is closed if Ro, N Re, = {0}.

Proof: The Cartesian product C' = C7 x--- x Cp,
is closed convex, and its recession cone is Rg =

Rc, X --- x Re, . Let A be defined by
A1, . xm) =21+ -+ Tm

Then
AC=Ci1+ -+ Chn,

and
N(A) ={(di,....dm) | d1i + -+ dmn =0}

ReNN(A) = {(d1,...,dm) | di+ - +dm =0, d;i € Re,, Vi}

By the given condition, Rc NN (A) = {0}, so AC
is closed. Q.E.D.

17



HYPERPLANES

Positive Halfspace
{z | ez = b}

Hyperplane
{r ez =0 — |z | ez —0aT}

Negative Halfspace
{a |lalx = b}

o A hyperplane is a set of the form {x | a’x = b},
where a is nonzero vector in "™ and b is a scalar.

e We say that two sets C'y and Cq are separated
by a hyperplane H = {x | a’x = b} if each lies in a
different closed halfspace associated with H, i.e.,

either a’x1 < b < a’xs, Var € Cr, Vas € (o,
or a'ro <b<auxi, Va1 € C, Vo e (s
e If ¥ belongs to the closure of a set C', a hyper-

plane that separates C' and the singleton set {z}
is said be supporting C' at T.
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VISUALIZATION

e Separating and supporting hyperplanes:

() (b)

o A separating {x | o/’ = b} that is disjoint from
C1 and (% is called strictly separating:

a’a:1<b<a’:1:2, VazleCl, YV 20 € (9

Ch Cs
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SUPPORTING HYPERPLANE THEOREM

e Let C be convex and let T be a vector that is
not an interior point of C. Then, there exists a
hyperplane that passes through = and contains C
in one of its closed halfspaces.

Proof: Take a sequence {zy} that does not be-
long to cl(C') and converges to T. Let zj be the
projection of xx on cl(C). We have for all x €

cl(C)
a,xr > a, T, Vxec(C), VkE=0,1,...,

where ar = (T — zr)/||Zr — zk||- Let a be a limit
point of {ax}, and take limit as k — co. Q.E.D.
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SEPARATING HYPERPLANE THEOREM

e Let C'1 and (U5 be two nonempty convex subsets
of ®Rn. If C; and (9 are disjoint, there exists a
hyperplane that separates them, i.e., there exists
a vector a # 0 such that

a'r1 < a'xo, Vo, eCq, Vo e (h.

Proof: Consider the convex set
01—62:{562—5171 ‘5171 c (1, x2 ECQ}

Since C'1 and C> are disjoint, the origin does not
belong to C'7 — C2, so by the Supporting Hyper-
plane Theorem, there exists a vector a # 0 such
that

0<ax, Vel — O,

which is equivalent to the desired relation. Q.E.D.
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STRICT SEPARATION THEOREM

e Strict Separation Theorem: Let C'; and (s
be two disjoint nonempty convex sets. If C7 is
closed, and (5 is compact, there exists a hyper-
plane that strictly separates them.

(a)

Proof: (Outline) Consider the set C1 —C5. Since
(' is closed and C5 is compact, C1 — (s is closed.
Since 7 N Cy = Q, 0 §é Cp — Cy. Let 11 — To
be the projection of 0 onto C; — C2. The strictly
separating hyperplane is constructed as in (b).

e Note: Any conditions that guarantee closed-
ness of C1 — (2 guarantee existence of a strictly
separating hyperplane. However, there may exist
a strictly separating hyperplane without C7 — Cs
being closed.
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