LECTURE 5

LECTURE OUTLINE

e Recession cones and lineality space
e Directions of recession of convex functions
e Local and global minima

e [Existence of optimal solutions

Reading: Section 1.4, 3.1, 3.2

All figures are courtesy of Athena Scientific, and are used with permission.
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RECESSION CONE OF A CONVEX SET

e Given a nonempty convex set C, a vector d is
a direction of recession if starting at any x in C
and going indefinitely along d, we never cross the
relative boundary of C' to points outside C"

x+ade C, Veel, YVa>0

Recession Cone Ro

e Recession cone of C' (denoted by R¢): The set
of all directions of recession.

e R is a cone containing the origin.



RECESSION CONE THEOREM

e Let C be a nonempty closed convex set.

(a) The recession cone R¢ is a closed convex
cone.

(b) A vector d belongs to R¢ if and only if there
exists some vector x € C' such that z +ad €
C for all a > 0.

(¢) Rc contains a nonzero direction if and only
if C' is unbounded.

(d) The recession cones of C' and ri(C') are equal.

(e) If D is another closed convex set such that
CND +# O, we have

Renp = Re N Rp
More generally, for any collection of closed

convex sets C;, v € I, where [ is an arbitrary
index set and N;c7C; is nonempty, we have

Rn,c;c; = Nier Re,



PROOF OF PART (B)

e Let d # 0 be such that there exists a vector

r € C with x + ad € C for all « > 0. We fix

Tz € C' and o > 0, and we show that T + ad € C.

By scaling d, it is enough to show that T+ d € C.
For k=1,2,..., let

Zk — X
w=tkd,  de= "D g
(B
We have
d_k: |z — x|| d x—T |z — x| x—7T 0
ldl Nz =2 ldll  llzx —ZI [lz — Z|| "z — T ’

so dr — d and * + dr — T + d. Use the convexity
and closedness of C' to conclude that £ + d € C.



LINEALITY SPACE

e The lineality space of a convex set C', denoted by
L, is the subspace of vectors d such that d € R¢
and —d € R¢:

Lo =Rc N (—Rc)

e If d € Lo, the entire line defined by d is con-
tained in C', starting at any point of C.

e Decomposition of a Convex Set: Let C be a
nonempty convex subset of . Then,

C=Lc+ (CNLE).

e Allows us to prove properties of C' on C' N Lé
and extend them to C.

e True also if L¢ is replaced by a subspace S C
Lc.




DIRECTIONS OF RECESSION OF A FN

e We aim to characterize directions of monotonic
decrease of convex functions.

e Some basic geometric observations:

— The “horizontal directions” in the recession
cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

— Along these directions the level sets {x |

f(z) <~} are unbounded and f is mono-
tonically nondecreasing.

e These are the directions of recession of f.
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RECESSION CONE OF LEVEL SETS

e Proposition: Let f : " — (—o00, 00] be a closed
proper convex function and consider the level sets
Vy, ={z | f(z) <~}, where v is a scalar. Then:

(a) All the nonempty level sets V., have the same
recesslon cone:

RVW — {d ‘ (dv 0) S Repi(f)}

(b) If one nonempty level set V, is compact, then
all level sets are compact.

Proof: (a) Just translate to math the fact that

Ry, = the “horizontal” directions of recession of epi( f)

(b) Follows from (a).



DESCENT BEHAVIOR OF A CONVEX FN

1 f(@+ad) Y f(z+ od)

Ry
Sy

© (@)

(e) ®

e y is a direction of recession in (a)-(d).

e This behavior is independent of the starting
point x, as long as x € dom(f).
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RECESSION CONE OF A CONVEX FUNCTION

e For a closed proper convex function f : R" —
(—00, 00], the (common) recession cone of the nonempty
level sets Vy, = {z | f(x) < 7}, v € R, is the re-
cesston cone of f, and is denoted by Ry.

Recession Cone Ry

|

Level Sets of f

e Terminology:
— d € Ry: a direction of recession of f.
— Ly = Ry N (—Ry): the lineality space of f.
— d € Ly: a direction of constancy of f.

e Example: For the pos. semidefinite quadratic
flz) =2'Qx + a’x + b,
the recession cone and constancy space are

Ry={d|Qd=0,ad<0}, Ly ={d| Qd=0, a'd=0}
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RECESSION FUNCTION

e Function r¢ : R" — (—o00, 00| whose epigraph
is Repi(p) 18 the recession function of f.

e (haracterizes the recession cone:
Ry ={d|rs(d) <0}, Ly={d]|rs(d)=rs(—d) =0}

since Ry = {(d,0) € Repi(s) }-
e (Can be shown that

flx + ad) — f(x)

ry(d) = sup _ oy LEtad) - f@)

a>0 (87 o— 00 (87

e Thus r¢(d) is the “asymptotic slope” of f in the
direction d. In fact,

re(d) = lim Vf(z+ ad)d, Vx,de Rr

a— 00

if f is differentiable.

e (alculus of recession functions:
Pyt fo (d) =71, (d) + -+ 15, (d),
Tsup,c; f (d) = Supry, (d)

el
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LOCAL AND GLOBAL MINIMA

e Consider minimizing f : R" — (—o0, 00| over a
set X C j»

e 1 is feasible if z € X Ndom(f)

e r*is a (global) minimum of f over X if x* is
feasible and f(x*) = inf e x f(x)

e x* is a local minimum of f over X if z* is a
minimum of f over a set X N{x | ||z — x*|| < €}

Proposition: If X is convex and f is convex,
then:

(a) A local minimum of f over X is also a global
minimum of f over X.

(b) If f is strictly convex, then there exists at
most one global minimum of f over X.
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EXISTENCE OF OPTIMAL SOLUTIONS

e The set of minima of a proper f : k" —
(—o0, 00] is the intersection of its nonempty level
sets.

e The set of minima of f is nonempty and com-
pact if the level sets of f are compact.

e (An Extension of the) Weierstrass’ Theo-
rem: The set of minima of f over X is nonempty
and compact if X is closed, f is lower semicontin-

uous over X, and one of the following conditions
holds:

(1) X is bounded.

(2) Some set {z € X | f(z) <~} is nonempty
and bounded.

(3) For every sequence {xx} C X s. t. ||zx] —
00, we have limy_, o f(zr) = oo. (Coercivity
property).

Proof: In all cases the level sets of f NX are
compact. Q.E.D.
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EXISTENCE OF SOLUTIONS - CONVEX CASE

e Weierstrass’ Theorem specialized to con-
vex functions: Let X be a closed convex subset
of 7, and let f : R" +— (—o0, 0| be closed con-
vex with X Ndom(f) # @. The set of minima of
f over X is nonempty and compact if and only
if X and f have no common nonzero direction of
recession.

Proof: Let f* =inf,cx f(x) and note that f* <

oo since X Ndom(f) # . Let {vx} be a scalar
sequence with v, | f*, and consider the sets

Vi ={z| f(z) <}
Then the set of minima of f over X is
X* = ﬂzozl(X M Vk).

The sets X N V), are nonempty and have Rx N Ry
as their common recession cone, which is also the
recession cone of X*, when X* # (J. It follows
that X* is nonempty and compact if and only if

Rx NRy = {0} Q.E.D.
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EXISTENCE OF SOLUTION, SUM OF FNS

o Let fi : R" — (—00,00],7=1,...,m, be closed
proper convex functions such that the function

f=fit+fm

is proper. Assume that a single function f; sat-
isfies r¢,(d) = oo for all d # 0. Then the set of
minima of f is nonempty and compact.

e Proof: We have r¢(d) = oo for all d # 0 since
re(d) = >0 75 (d). Hence f has no nonzero di-
rections of recession. Q.E.D.

e True also for f = max{fi,..., fm}.

e Example of application: If one of the f; is
positive definite quadratic, the set of minima of
the sum f is nonempty and compact.

e Also f has a unique minimum because the pos-
itive definite quadratic is strictly convex, which
makes f strictly convex.
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