LECTURE 4
LECTURE OUTLINE

e Relative interior and closure
e Algebra of relative interiors and closures
e Continuity of convex functions

e C(losures of functions

Reading: Section 1.3

All figures are courtesy of Athena Scientific, and are used with permission.
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RELATIVE INTERIOR

e 1 is a relative interior point of C, if x is an
interior point of C relative to aff(C).

e ri(C) denotes the relative interior of C, i.e., the
set of all relative interior points of C.

e Line Segment Principle: If C'is a convex set,
z € ri(C) and T € cl(C'), then all points on the
line segment connecting x and x, except possibly
Z, belong to ri(C).

e Proof of case where x € C: See the figure.

e Proof of case where T ¢ C: Take sequence
{zr} C C with x — Z. Argue as in the figure.



ADDITIONAL MAJOR RESULTS

e Let C be a nonempty convex set.

(a) ri(C') is a nonempty convex set, and has the
same affine hull as C.

(b) Prolongation Lemma: z € ri(C) if and
only if every line segment in C having x
as one endpoint can be prolonged beyond x
without leaving C.

z1 and 29 are linearly
independent, belong to
C and span aff(C')

Proof: (a) Assume that 0 € C'. We choose m lin-
early independent vectors zi,...,zm,m € C, where
m is the dimension of aff(C'), and we let

X = {iazzz i&i<1, 047;>O,i:1,...,m}
1=1 1=1

(b) => is clear by the def. of rel. interior. Reverse:
take any T € ri(C'); use Line Segment Principle.
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OPTIMIZATION APPLICATION

e A concave function f : R"™ +— R that attains its
minimum over a convex set X at an x* € ri(X)
must be constant over X.

aff (X)

Proof: (By contradiction) Let z € X be such
that f(z) > f(x*). Prolong beyond z* the line
segment z-to-z* to a point * € X. By concavity
of f, we have for some a € (0,1)

fla*) = af(z) + (1 - a)f(Z),

and since f(x) > f(z*), we must have f(x*) >
f(Z) - a contradiction. Q.E.D.

e Corollary: A nonconstant linear function can-
not attain a minimum at an interior point of a
convex set.
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CALCULUS OF REL. INTERIORS: SUMMARY

e The ri(C') and cl(C') of a convex set C' “differ
very little.”

— Any set “between” ri(C) and cl(C') has the
same relative interior and closure.

— The relative interior of a convex set is equal
to the relative interior of its closure.

— The closure of the relative interior of a con-
vex set is equal to its closure.

e Relative interior and closure commute with
Cartesian product and inverse image under a lin-
ear transformation.

e Relative interior commutes with image under a
linear transformation and vector sum, but closure
does not.

e Neither relative interior nor closure commute
with set intersection.



CLOSURE VS RELATIVE INTERIOR

e Proposition:
(a) We have cl(C) = cl(ri(C)) and ri(C) = ri(cl(C)).

(b) Let C be another nonempty convex set. Then
the following three conditions are equivalent:

(i) C and C have the same rel. interior.
(ii) C and C have the same closure.
(iii) ri(C) C C C cl(C).

Proof: (a) Since ri(C') C C, we have cl(ri(C)) C
cl(C'). Conversely, let T € cl(C). Let z € ri(C).
By the Line Segment Principle, we have

ar + (1 — a)T € ri(C), vV ae (0,1].

Thus, 7 is the limit of a sequence that lies in ri(C),

so T € cl(ri(C)).

X

The proof of ri(C) = ri(cl(C)) is similar.
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LINEAR TRANSFORMATIONS

e Let C' be a nonempty convex subset of £ and
let A be an m X n matrix.

(a) We have A -ri(C') =ri(A-C).

(b) We have A -cl(C) C cl(A-C). Furthermore,
if C' is bounded, then A - cl(C) = cl(A - C).

Proof: (a) Intuition: Spheres within C' are mapped
onto spheres within A - C' (relative to the affine
hull).

(b) We have A-cl(C) C cl(A-C), since if a sequence
{zr} C C converges to some x € cl(C') then the
sequence { Az }, which belongs to A-C', converges
to Az, implying that Az € cl(A - C).

To show the converse, assuming that C' is
bounded, choose any z € cl(A - C). Then, there
exists {xr} C C such that Azy — 2. Since C is
bounded, {z;} has a subsequence that converges

to some z € cl(C'), and we must have Az = z. It
follows that z € A - cl(C). Q.E.D.

Note that in general, we may have

A-int(C) # int(A - C), A-cl(C) #cl(A-C)



INTERSECTIONS AND VECTOR SUMS

e Let (1 and (> be nonempty convex sets.

(a) We have
ri(Cy + C2) =ri(C1) + 1i(C2),

cl(Ch) + cl(Cy) C cl(Ch + Co)
If one of C'1 and Cs is bounded, then

Cl(Cl) —+ CI(CQ) = Cl(Cl —+ 02)
(b) We have

I‘i(Cl)ﬂri(CQ) C I‘i(ClﬂCQ), CI(C1QCQ) C Cl(C1)ﬂC1(CQ)
If ri(Ch1) Nri(C2) # @, then
ri(C1NC2) = ri(Ch)Nri(Ca), cl(CiNCy) = cl(C1)Nel(Cs)

Proof of (a): C; + (5 is the result of the linear
transformation (x1,x2) — x1 + 2.

e Counterexample for (b):

C1={z |z <0}, Co={x|x >0}

Chr={z |z <0}, Co={x |z >0}
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CARTESIAN PRODUCT - GENERALIZATION

e Let C be convex set in Rn+t™, For x € k7, let

Co =1y | (z,y) € C},

and let
D ={z|Cy # O}

Then

ri(C) = {(z,y) | z € 1i(D), y € ri(Cy) }.

Proof: Since D is projection of C' on z-axis,
ri(D) = {z | there exists y € ®™ with (z,y) € ri(C)},
so that

1i(C) = Uperi(p) (Mx N ri(C)),

where M, = {(z,y) | y € R™}. For every z €
ri(D), we have

M, N1i(C) =1i(M, N C) = {(z,y) | y € 1i(Cy) }.

Combine the preceding two equations. Q.E.D.
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CONTINUITY OF CONVEX FUNCTIONS

e If f:R” — R is convex, then it is continuous.

es = (—1,1) yx e1 =(1,1)

es = (=1, 1) 2z eg=(1,—1)

Proof: We will show that f is continuous at O.
By convexity, f is bounded within the unit cube
by the max value of f over the corners of the cube.

Consider sequence xr; — 0 and the sequences

Y = Tr/||Tk||co, 2k = —xk/||Tk||0o. Then
f(@r) < (1= [lzxllo) £(0) + |2k loo f (yr)

. !
2K ) +
Fe) + e 1

F(0) < flzr)

"~ [lzklleo +1

Take limit as k — oo. Since ||z ||coc — 0, we have

lim sup [k oo £(ye) < 0, limsup 5= r2y <

so f(xx) — f(0). Q.E.D.

e Fxtension to continuity over ri(dom(f)).




CLOSURES OF FUNCTIONS

e The closure of a function f : X — |—o0, 0] is
the function cl f : R" — [—o0, 0o] with

epi(cl f) = cl(epi(f))
e The convex closure of f is the function cl f with

epi(cl f) = cl(conv (epi(f)))

e Proposition: For any f : X — [—o00, 00]

inf f(x)= inf (cl f)(x) = inf (cl f)(x).

reX rER™ reER™
Also, any vector that attains the infimum of f over
X also attains the infimum of cl f and cl f.
e Proposition: For any f: X +— [—00, 00]:

(a) cl f (or cl f) is the greatest closed (or closed
convex, resp.) function majorized by f.

(b) If f is convex, then cl f is convex, and it is
proper if and only if f is proper. Also,

(cl f)(x) = f(x), V x € ri(dom(f)),
and if € ri(dom(f)) and y € dom(cl f),

(L f)(y) = lim f (y + alz — ).

al0
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