LECTURE 3

LECTURE OUTLINE

e Differentiable Convex Functions
e Convex and Affine Hulls

e (Caratheodory’s Theorem

Reading: Sections 1.1, 1.2

All figures are courtesy of Athena Scientific, and are used with permission.
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DIFFERENTIABLE CONVEX FUNCTIONS

x Vix)(z—=x
f(/)+ f(z)( )

>
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e Let C' C R" be a convex set and let f : R? — R
be differentiable over R™.

(a) The function f is convex over C' iff

f(z) > f(x)+(z—2)Vf(z), Va,zel

(b) If the inequality is strict whenever = # z,
then f is strictly convex over C.



PROOF IDEAS
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OPTIMALITY CONDITION

e Let C' be a nonempty convex subset of £ and
let f:R" — R be convex and differentiable over
an open set that contains C'. Then a vector z* € C
minimizes f over C' if and only if

Vf(x*)(x—ax*) >0, Vel

Proof: If the condition holds, then
f(z) = fz*)+(z—z*)'V f(z*) = f(z*), VzeCl,

so x* minimizes f over C.

Converse: Assume the contrary, i.e., x* min-
imizes f over C and V f(x*)'(x —x*) < 0 for some
x € C. By differentiation, we have

gy [0 ED IO ey o) <

SO f(:L‘* + a(x — w*)) decreases strictly for suffi-

ciently small o > 0, contradicting the optimality
of z*. Q.E.D.



PROJECTION THEOREM

e Let C be a nonempty closed convex set in &".

(a) For every z € R, there exists a unique min-

imum of

flz) =z — x|
over all x € C' (called the projection of z on
).

(b) x* is the projection of z if and only if

(x —x*)(z —x*) <0, Veel

Proof: (a) f is strictly convex and has compact
level sets.

(b) This is just the necessary and sufficient opti-
mality condition

V() (x—ax*) >0, Vaedl.



TWICE DIFFERENTIABLE CONVEX FNS

e Let C be a convex subset of R and let f :
K™ — R be twice continuously differentiable over

R

(a) If V2f(x) is positive semidefinite for all z €
C', then f is convex over C.

(b) If V2f(x) is positive definite for all x € C,
then f is strictly convex over C.

(c) If C is open and f is convex over C, then
V2 f(x) is positive semidefinite for all z € C.

Proof: (a) By mean value theorem, for x,y € C

f) = f(@)+@y—2) Vi@)+i(y—2) V2 f (z+aly—2)) (y—=)

for some a € [0,1]. Using the positive semidefi-
niteness of V2 f, we obtain

fy) = fle)+(y—x)Vf(z), Vz,yel

From the preceding result, f is convex.

(b) Similar to (a), we have f(y) > f(z) + (y —
x)'V f(x) for all x,y € C' with x # y, and we use
the preceding result.

(c) By contradiction ... similar.
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CONVEX AND AFFINE HULLS

e (iven a set X C Rn:

e A convexr combination of elements of X is a
vector of the form > " | «;x;, where z; € X, o >
0, and > ", a; = 1.

e The convex hull of X, denoted conv(X), is the
intersection of all convex sets containing X. (Can
be shown to be equal to the set of all convex com-
binations from X).

e The affine hull of X, denoted aff(X), is the in-
tersection of all affine sets containing X (an affine
set is a set of the form * + S, where S is a sub-
space).

e A nonnegative combination of elements of X is
a vector of the form Y '" | a;x;, where 2; € X and
a; > 0 for all s.

e The cone generated by X, denoted cone(X), is
the set of all nonnegative combinations from X:
— It is a convex cone containing the origin.
— It need not be closed!

— If X is a finite set, cone(X) is closed (non-
trivial to show!)



CARATHEODORY’S THEOREM

T4 T2
conv(X)
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(a) (b)

e Let X be a nonempty subset of R~.
(a) Every x # 0 in cone(X) can be represented

as a positive combination of vectors 1, ..., Tm
from X that are linearly independent (so
m <n).

(b) Every x ¢ X that belongs to conv(X) can
be represented as a convex combination of
vectors x1,...,Tm from X with m <n+ 1.



PROOF OF CARATHEODORY’S THEOREM

(a) Let = be a nonzero vector in cone(X), and
let m be the smallest integer such that x has the
form Y " ajxi, where a; > 0 and z; € X for
all 2+ = 1,...,m. If the vectors x; were linearly
dependent, there would exist A1,..., A\, with

i )\ixi =0
1=1

and at least one of the \; is positive. Consider

m

Z(Oéi — i),

i=1
where 7 is the largest v such that a; —yA; > 0 for
all 7. This combination provides a representation
of x as a positive combination of fewer than m vec-
tors of X —a contradiction. Therefore, x1,...,Tm,
are linearly independent.

(b) Use “lifting” argument: apply part (a) to Y =
{(z,1) |z € X}.




AN APPLICATION OF CARATHEODORY

e The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence
in conv(X ) and show that it has a convergent sub-
sequence whose limit is in conv(X).

By Caratheodory, a sequence in conv(X ) can

be expressed as {ZZ i ozkmk }, where for all £ and

. 1 .
i, af >0, 2F € X, and i:+1 af = 1. Since the
sequence

{(a’f,...,a’fb+1,x’f,...,azﬁ+l)}

is bounded, it has a limit point
{(oq, e, Ot 1, L1, - ,.CIZn_|_1)},

which must satisfy Z 1 o; = 1, and o; > 0,
r; € X for all s.
The vector Z,L . a;x; belongs to conv(X)

and is a limit point of {Z?Jrll alz? }, showing
that conv(X) is compact. Q.E.D.

e Note that the convex hull of a closed set need
not be closed!
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