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Problem 1
Consider the convex programming problem
minixmize f(x)
subject to z € X, g¢g(z) <0,
of Section 5.3, and assume that the set X is described by equality and inequality constraints as
X={z|h(z)=0,i=1,...,m, gj(x) <0,j=r+1,...,7}.

Then the problem can alternatively be described without an abstract set constraint, in terms of all
of the constraint functions

hi(x) =0, i=1,...,m, gi(z) <0, j=1,...,F .

We call this the extended representation of (P). Show if there is no duality gap and there exists a
dual optimal solution for the extended representation, the same is true for the original problem.

Solution.

Assume that there exists a dual optimal solution in the extended representation. Thus there exist

nonnegative scalars AJ,..., AL, Ar o1, A5 and pf, ... pr fiyy g, - - -, g such that

fr=inf )+ Nhi(x)+ > pigi(z) o,
i=1 j=1

rER™

from which we have
F5<f@) + ) Nhi(x) + ) pgi(x),  VaeR
i=1 j=1

For any € X, we have h;(z) =0 for all i = 1,...,m, and g;j(z) < O0forall j =r+1,...,7, so
that pjgj(z) <0 forall j=r+1,...,7. Therefore, it follows from the preceding relation that

f*Sf(SU)—i-Zu;gj(:c), VroelX.
j=1



Taking the infimum over all x € X, it follows that
T
* f *
fr<inf f(z) + Zl w;g;(z)
]:

< inf Fl@)+> pigi(x)
j=1

_.’EGX,QJ(x)SO, j:1:'~'7T

< inf T
T z€X, hi(z)=0, i=1,....,m f( )
9;(2)<0, j=1,...,m

=f *
Hence, equality holds throughout above, showing that the scalars A}, ..., Ay,, uJ, ..., iy constitute
a dual optimal solution for the original representation.
Problem 2
Consider the class of problems
minimize  f(z)
x
subject to = € X, gi(z) <wuy, j=1,...,m,
where u = (u1,...,u,) is a vector parameterizing the right-hand side of the constraints. Given two

distinct values u and @ of u, let f and f be the corresponding optimal values, and assume that f
and f are finite. Assume further that g and fi are corresponding dual optimal solutions and that
there is no duality gap. Show that

fla—a)< f-f

IN
=i

Solution.
We have

f = inf {f(z)+ i (g(z) - )},
f =t {f(@) + ' (g(x) = u)}.
Let q(u) denote the dual function of the problem corresponding to u:

Q) = it {£(z) + p(g(w) - ).

We have
F—1 = it {f(x) + 1 g(@) — 0} — inf {F(z) + 4 (g(x) — w)}
= inf {f(z) + @'(g(x) — @)} — inf {f(z) + p'(9(z) — @)} + p'(u — @)

where the last inequality holds because i maximizes §. B
This proves the left-hand side of the desired inequality. Interchanging the roles of f, u, i, and
f, u, u, shows the desired right-hand side.



Problem 3

Let gj : R" — R, j =1,...,r, be convex functions over the nonempty convex subset of R". Show
that the system
gj(z) <0, j=1,...,m7

has no solution within X if and only if there exists a vector u € R" such that

T
ZM;‘:L p =0,
j=1

wag(z) >0, VarelX.

Hint: Consider the convex program
minimize ¥y
z7y
subject to z € X,, y€ R, gi(x) <y, j=1,...,m

Solution.
The dual function for the problem in the hint is

—  inf (g:(x) —
a(w) = _inf y+;m(g](x) y)

_Jinfeex >0 pygi (@) if Yoy py =1,
—00 if 3o my # L

The problem in the hint satisfies the Slater condition, so the dual problem has an optimal solution
w* and there is no duality gap.
Clearly the problem in the hint has an optimal value that is greater or equal to 0 if and only if
the system of inequalities
gj(z) <0, j=1,...,m7

has no solution within X. Since there is no duality gap, we have

max  q(u) >0
p>0,37% 1 =1

if and only if the system of inequalities g;(x) < 0, j = 1,...,r, has no solution within X. This is
equivalent to the statement we want to prove.

Problem 4

Consider the problem
minimize  f(x)

subject to z € X, g(z) <O,

where X is a convex set, and f and g; are convex over X. Assume that the problem has at least
one feasible solution. Show that the following are equivalent.

(i) The dual optimal value ¢* = sup,,cgr q(2) is finite.

(ii) The primal function p is proper.



(iii) The set
M = {(u,w) € R"™" | there is an 2 € X such that g(z) < u, f(z) < w}

does not contain a vertical line.

Solution.
We note that —gq is closed and convex, and that

q(p) = uienlgr{p(u) + p'u}, YV €ER.

Since q(u) < p(0) for all u € R", given the feasibility of the problem [i.e., p(0) < o], we see that
¢* is finite if and only if ¢ is proper. Since ¢ is the conjugate of p(—u) and p is convex, by the
Conjugacy Theorem, ¢ is proper if and only if p is proper. Hence (i) is equivalent to (ii).

We note that the epigraph of p is the closure of M. Hence, given the feasibility of the problem,
(ii) is equivalent to the closure of M not containing a vertical line. Since M is convex, its closure
does not contain a line if and only if M does not contain a line (since the closure and the relative
interior of M have the same recession cone). Hence (ii) is equivalent to (iii).

Problem 5

Consider a proper convex function F' of two vectors x € R™ and y € R™. For a fixed (z,y) €
dom(F), let 0,F(Z,y) and 0, F (z,y) be the subdifferentials of the functions F(-,y) and F(z,-) at
Z and g, respectively. (a) Show that

OF(z,) C 0.F(Z,y) x 90,F(Z,7),

and give an example showing that the inclusion may be strict in general. (b) Assume that F' has
the form

F(z,y) = hi(x) + ha(y) + h(z,y),
where hq and hg are proper convex functions, and h is convex, real-valued, and differentiable. Show
that the formula of part (a) holds with equality.

Solution.
(a) We have (g4, gy) € OF (z,7) if and only if

F(z,y) > F(z,9) + gp(x — %) + g, (y —9), Yz e€R", yeR™

By setting y = ¥, we obtain that g, € 0,F(Z,y), and by setting x = Z, we obtain that g, €
Oy F(z,7), so that (gz,9y) € 0.F(Z,y) x 0y F(Z,7).

For an example where the inclusion is strict, consider any function whose subdifferential is not
a Cartesian product at some point, such as F(z,y) = |z + y| at points (z,y) with Z + gy = 0.
(b) Since F' is the sum of functions of the given form, we have

OF (2,9) = {(92,0) | 9= € 0h1(2)} +{(0,9y) | gy € Oha(9)} + {Vh(Z,9)}

[the relative interior condition of the proposition is clearly satisfied]. Since

Vh(i'a Zj) = (V:Eh(j7 g)? Vyh(jv Zj)),

the result follows.



Problem 6

This exercise shows how a duality gap results in nondifferentiability of the dual function. Consider
the problem
minimize  f(z)
x

subject to z € X, g(z) <0,

and assume that for all g > 0, the infimum of the Lagrangian L(z,u) over X is attained by at
least one x,, € X. Show that if there is a duality gap, then the dual function q(u) = inf e x L(x, p)
is nondifferentiable at every dual optimal solution. Hint: If ¢ is differentiable at a dual optimal
solution p*, by the theory of Section 5.3, we must have dq(n*)/0u; < 0 and p;0q(n*)/op; = 0 for
all j. Use optimality conditions for p*, together with any vector x,+ that minimizes L(z, u*) over
X, to show that there is no duality gap.

Solution.
To obtain a contradiction, assume that ¢ is differentiable at some dual optimal solution u* € M,
where M = {p € R" | p > 0}. Then

V(') (w" —p) 20, V=0

If i = 0, then by letting p = p* +~e; for a scalar v > 0, and the vector e; whose jth component is 1
and the other components are 0, from the preceding relation we obtain dq(u*)/0u; < 0. Similarly,
if i > 0, then by letting p = p* + ~ve; for a sufficiently small scalar v (small enough so that
pw* +vej € M), from the preceding relation we obtain dg(u*)/0u; = 0. Hence

aq(u*)/alL]SO? vj:]'?"'JT?

1;0q(p")/Op; = 0, Vi=1,...,r

Since q is differentiable at p*, we have that

V() = g(z%),

for some vector z* € X such that ¢(u*) = L(z*, u*). This and the preceding two relations imply
that 2* and p* satisfy the necessary and sufficient optimality conditions for an optimal primal and
dual optimal solution pair. It follows that there is no duality gap, a contradiction.

Problem 7

Consider the problem
minimize  f(z) = 10z + 3x2

subject to 5x1 + 29 > 4, 21,20 =0 or 1,

(a) Sketch the set of constraint-cost pairs {(4 — 5x1 — x2, 1021 + 3x2)|z1, 22 = 0 or 1}.
(b)Describe the corresponding MC/MC framework as per Section 4.2.3.
(¢) Solve the problem and its dual, and relate the solutions to your sketch in part (a).

Solution.
(a) The set of constraint-cost pairs contains 4 points: (-2,13), (-1,10), (3,3), (4,0).
(b) To each of these 4 points we add the first orphant and we get the M set.



(¢) The primal optimal solution is z* = (1,0) and the primal optimal cost is p* = 10. The dual
function is easily found to be:

4p ifp <2,
q(p) =10 —p if2<p<3,
13—2u if3<p.

Therefore ¢* = 8. This is the intersection of the line segment connecting the points (4,0), (-1,10)
with the y-axis.
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