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Problem 1 

(a) Show that a nonpolyhedral closed convex cone need not be retractive, by using as an example 
the cone C = {(u, v, w) �(u, v)� ≤ w}, the recession direction d = (1, 0, 1), and the corresponding 
asymptotic sequence {(k, 

| √
k, 
√
k2 + k)}. (This is the, so-called, second order cone, which plays an 

important role in conic programming; see Chapter 5.) 
(b) Verify that the cone C of part (a) can be written as the intersection of an infinite number of 
closed halfspaces, thereby showing that a nested set sequence obtained by intersection of an infinite 
number of retractive nested set sequences need not be retractive. 

Solution. 
(a) Clearly, d = (1, 0, 1) is the recession direction associated with the asymptotic sequence {xk} , 
where xk = (k, 

√
k, 
√
k2 + k). On the other hand, it can be verified by straightforward calculation 

that the vector � 
xk − d = (k − 1, 

√
k, k2 + k − 1) 

does not belong to C. Indeed, denoting 

uk = k − 1, vk = 
√
k, wk = 

� 
k2 + k − 1, 

we have 
�(uk, vk)�2 = (k − 1)2 + k = k2 − k + 1, 

while � � 
wk 

2 = ( k2 + k − 1)2 = k2 + k + 1 − 2 k2 + k, 

and it can be seen that 
�(uk, vk)�2 > wk

2 , ∀ k ≥ 1. 

(b) Since by the Schwarz inequality, we have 

max (ux + vy) = �(u, v)�, 
�(x,y)�=1 

it follows that the cone 
C = {(u, v, w) | �(u, v)� ≤ w} 

can be written as 
C = ∩�(x,y)�=1{(u, v, w) | ux + vy ≤ w}. 

Hence C is the intersection of an infinite number of closed halfspaces. 
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Problem 2 

Let C be a nonempty convex set in Rn, and 
M  rin(C) =  is a necessary and sufficient co

let M be a nonempty affine set in Rn . Show that

∩ ∅ ndition for the existence of a hyperplane H contain­


ing M , and such that rin(C) is contained in one of the open halfspaces associated with H.


Solution.

If there exists a hyperplane H with the properties stated, the condition M ∩ rin(C) = ∅ clearly

holds. Conversely, if M ∩ rin(C) = ∅, then M and C can be properly separated. This hyperplane

can be chosen to contain M since M is affine. If this hyperplane contains a point in rin(C), then it

must contain all of C. This contradicts the proper separation property, thus showing that rin(C)

is contained in one of the open halfspaces.
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Problem 3 

Let C1 and C2 be nonempty convex subsets of Rn, and let B denote the unit ball in Rn , B = {x |
�x� ≤ 1}. A hyperplane H is said to separate strongly C1 and C2 if there exists an � > 0 such that 
C1 + �B is contained in one of the open halfspaces associated with H and C2 + �B is contained in 
the other. Show that: 
(a) The following three conditions are equivalent. 

(i) There exists a hyperplane separating strongly C1 and C2. 
(ii) There exists a vector α ∈ Rn such that infx∈C1 α

�x > supx∈C2 
α�x. 

(iii) infx1∈C1, x2∈C2 �x1 − x2� > 0, i.e., 0 ∈/ cl(C2 − C1). 
(b) If C1 and C2 are disjoint, any one of the five conditions for strict separation, given in Prop. 
1.5.3, implies that C1 and C2 can be strongly separated. 

Solution. 
(a) We first show that (i) implies (ii). Suppose that C1 and C2 can be separated strongly. By 
definition, this implies that for some nonzero vector a ∈ Rn , b ∈ R, and � > 0, we have 

C1 + �B ⊂ {x | a�x > b}, 

C2 + �B ⊂ {x | a�x < b}, 

where B denotes the closed unit ball. Since a = 0, we also have 

inf{a�y | y ∈ B} < 0, sup{a�y | y ∈ B} > 0. 

Therefore, it follows from the preceding relations that 

b ≤ inf{a�x + �a�y | x ∈ C1, y ∈ B} < inf{a�x | x ∈ C1}, 

b ≥ sup{a�x + �a�y | x ∈ C2, y ∈ B} > sup{a�x | x ∈ C2}. 

Thus, there exists a vector a ∈ Rn such that 

inf a�x > sup a�x, 
x∈C1 x∈C2 

proving (ii). 
Next, we show that (ii) implies (iii). Suppose that (ii) holds, i.e., there exists some vector a ∈ Rn 

such that 
inf a�x > sup a�x, 
x∈C1 x∈C2 

Using the Schwartz inequality, we see that 

0 < inf a�x − sup a�x 
x∈C1 x∈C2 

= inf a�(x1 − x2), 
x1∈C1, x2∈C2 

inf≤ 
x1∈C1, x2∈C2

�a��x1 − x2�. 

It follows that

inf �x1 − x2� > 0,


x1∈C1, x2∈C2 

thus proving (iii). Finally, we show that (iii) implies (i). If (iii) holds, we have for some � > 0, 

inf �x1 − x2� > 2� > 0. 
x1∈C1, x2∈C2 
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From this we obtain for all x1 ∈ C1, all x2 ∈ C2, and for all y1, y2 with �y1� ≤ �, �y2� ≤ �, 

�(x1 + y1) − (x2 + y2)� ≥ �x1 − x2� − �y1� − �y2� > 0, 

which implies that 0 ∈/ (C1 + �B) − (C2 + �B). Therefore, the convex sets C1 + �B and C2 + �B 
are disjoint. By the Separating Hyperplane Theorem, we see that C1 + �B and C2 + �B can be 
separated, i.e., C1 +�B and C2 +�B lie in opposite closed halfspaces associated with the hyperplane 
that separates them. Then, the sets C1 + (�/2)B and C2 + (�/2)B lie in opposite open halfspaces, 
which by definition implies that C1 and C2 can be separated strongly. 

(b) Since C1 and C2 are disjoint, we have 0 ∈/ (C1 − C2). Any one of conditions (2)-(5) of Prop. 
1.5.3 imply condition (1) of that proposition, which states that the set C1 − C2 is closed, i.e., 

cl(C1 − C2) = C1 − C2. 

Hence, we have 0 ∈/ cl(C1 − C2), which implies that 

inf �x1 − x2� > 0. 
x1∈C1, x2∈C2 

From part (a), it follows that there exists a hyperplane separating C1 and C2 strongly. 
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Problem 4 

We say that a function f : Rn �→ (−∞, ∞] is quasiconvex if all its level sets 

Vγ = {x | f(x) ≤ γ} 

are convex. Let X be a convex subset of Rn, let f be a quasiconvex function such that X∩dom(f) =�
∅, and denote f∗ = infx∈X f(x). 

(a) Assume that f is not constant on any line segment of X, i.e., we do not have f(x) = c for 
some scalar c and all x in the line segment connecting any two distinct points of X. Show that 
every local minimum of f over X is also global. 

(b) Assume that X is closed, and f is closed and proper. Let Γ be the set of all γ > f∗, and 
denote 

Rf = ∩γ∈ΓRγ , Lf = ∩γ∈ΓLγ , 

where Rγ and Lγ are the recession cone and the lineality space of Vγ , respectively. Use the line of 
proof of Prop. 3.2.4 to show that f attains a minimum over X if any one of the following conditions 
holds: 

(1) RX ∩ Rf = LX ∩ Lf . 
(2) RX ∩ Rf ⊂ Lf , and X is a polyhedral set. 

Solution. 
(a) Let x∗ be a local minimum of f over X and assume, to arrive at a contradiction, that there 
exists a vector x̄ ∈ X such that f(x̄) < f(x∗). Then, x̄ and x∗ belong to the set X ∩ Vγ∗ , where 
γ∗ = f(x∗). Since this set is convex, the line segment connecting x∗ and x̄ belongs to the set, 
implying that 

f(αx̄+ (1 − α)x∗) ≤ γ∗ = f(x∗), ∀ α ∈ [0, 1]. 

For each integer k ≥ 1, there must exist an αk ∈ (0, 1/k] such that 

f(αkx̄+ (1 − αk)x
∗) < f(x∗), for some αk ∈ (0, 1/k] 

otherwise, we would have that f(x) is constant for x on the line segment connecting x∗ and (1/k)x̄+ 
(1 − (1/k))x∗. This contradicts the local optimality of x∗. 

(b) We consider the level sets 
Vγ = {x | f(x) ≤ γ} 

for γ > f∗. Let {γk} be a scalar sequence such that γk ↓ f∗. Using the fact that for two nonempty 
closed convex sets C and D such that C ∈ D, we have RC ∈ RD, it can be seen that 

Rf = ∩γ∈ΓRγ = ∩∞
k=1Rγk . 

Similarly, Lf can be written as 
Lf = ∩γ∈ΓLγ = ∩∞

k=1Lγk . 

Under each of the conditions (1) and (2), we will show that the set of minima of f over X, which 
is given by 

X∗ = ∩∞
k=1(X ∩ Vγk ) 

is nonempty. 
Let condition (1) hold. The sets X∩Vγk are nonempty, closed, convex, and nested. Furthermore, 

for each k, their recession cone is given by RX ∩ Rγk and their lineality space is given by LX ∩ Lγk . 
We have that 

∩∞
k=1(RX ∩ Rγk ) = RX ∩ Rf , 
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and

∩∞
k=1(LX ∩ Lγk ) = LX ∩ Lf , 

while by assumption RX ∩ Rf = LX ∩ Lf . Then it follows that X∗ is nonempty. 
Let condition (2) hold. The sets Vγk are nested and the intersection X ∩ Vγk is nonempty for 

all k. We also have by assumption that RX ∩ Rf ∈ Lf and X is a polyhedral set. It follows that 
X∗ is nonempty. 
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Let F : Rn+m �

Problem 5 

→ (−∞, ∞] be a closed proper convex function of two vectors x ∈ Rn and z ∈ Rm , 
and let � � 

X = x inf F (x, z) < ∞ .| 
z∈Rm 

Assume that the function F (x, ) is closed for each x ∈ X. Show that: ·
(a) If for some x̄ ∈ X, the minimum of F (x̄, ) over Rm is attained at a nonempty and compact ·

set, the same is true for all x ∈ X. 
(b) If the functions F (x, ) are differentiable for all x ∈ X, they have the same asymptotic slopes ·

along all directions, i.e., for each d ∈ Rm, the value of limα→∞ �zF (x, z + αd)�d is the same for all

x ∈ X and z ∈ Rm .


Solution.

The recession cone of F has the form


RF = {(dx, dz) | (dx, dz, 0) ∈ Repi(F )}. 

The (common) recession cone of the nonempty level sets of F (x, ), x ∈ X, has the form ·

{dz | (0, dz) ∈ RF }, 

for all x ∈ X, where RF is the recession cone of F . Furthermore, the recession function of F (x, )·
is the same for all x ∈ X. 

(a) By the compactness hypothesis, the recession cone of F (x̄, ) consists of just the origin, so ·
the same is true for the recession cones of all F (x, ), x ∈ X. Thus the nonempty level sets of ·
F (x, ), x ∈ X, are all compact. ·

(b) This is a consequence of the fact that the recession function of F (x, ) is the same for all ·
x ∈ X, and the comments following Prop. 1.4.5 
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