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Problem 1

(a) Let C be a nonempty convex cone. Show that cl(C) and ri(C) is also a convex cone.
(b) Let C = cone({x1,...,2m}). Show that

m
ri(C) = {Z a;zila; >0,i=1,...,m}.
i=1

Solution.

(a) Let € cl(C) and let a be a positive scalar. Then, there exists a sequence {z}} € C such
that xr — x, and since C' is a cone, axy € C for all k. Furthermore, ax; — ax, implying that
azx € cl(C). Hence, cl(C) is a cone, and it also convex since the closure of a convex set is convex.

By Prop.1.3.2, the relative interior of a convex set is convex. To show that rin(C) is a cone,
let € rin(C). Then, z € C and since C' is a cone, ax € C for all & > 0. By the Line Segment
Principle, all the points on the line segment connecting x and ax, except possibly ax, belong to
rin(C). Since this is true for every a > 0, it follows that ax € rin(C) for all « > 0, showing that
rin(C) is a cone.

(b) Consider the linear transformation A that maps (o1,...,o,) € R™ into Y " ayz; € R™.
Note that C' is the image of the nonempty convex set

{(a1,...,am) a1 >0,...,q, >0}
under A. Therefore, we have

rin(C) = rin(A-{(a1,...,am) | a1 > 0,...,a; > 0})
=A-rin({(a1,...,am) | a1 >0,...,0p, > 0})
=A-{(a1,...,am) | a1 >0,...,q,, >0}

m
:{Zaixi|a1>0,...,am>0}.
i=1



Problem 2
Let C7 and C5 be convex sets. Show that

CiNri(Cy) # 0 if and only if  7i(CiNaff(Ca)) Nri(Cs) # 0.

Solution.

Let x € C1 Nrin(Cs) and T € rin(Cy Naff(Cy)). Let L be the line segment connecting = and z.
Then L belongs to C1 Naf f(Csy) since both of its endpoints belong to C; Naff(C2). Hence, by
the Line Segment Principle, all points of L except possibly z, belong to rin(Cy Naff(C3)). On
the other hand, by the definition of relative interior, all points of L that are sufficiently close to x
belong to rin(Cs), and these points, except possibly for = belong to rin(Cy Naf f(Cs)) Nrin(Cs).
The other direction is obvious.



Problem 3

(a) Consider a vector z* such that a given function f : R™ — R is convex over a sphere centered
at x*. Show that z* is a local minimum of f if and only if it is a local minimum of f along every
line passing through z* [i.e., for all d € R", the function g : R — R, defined by g(a) = f(z* + ad),
has a* = 0 as its local minimum].

(b) Consider the nonconvex function f : R? — R given by

fla1,22) = (w2 — pai)(z2 — qa}),

where p and ¢ are scalars with 0 < p < ¢, and z* = (0,0). Show that f(y,my?) < 0 for y # 0 and
m satisfying p < m < ¢, so z* is not a local minimum of f even though it is a local minimum along
every line passing through x*.

Solution.
(a) If * is a local minimum of f, evidently it is also a local minimum of f along any line passing
through z*.

Conversely, let z* be a local minimum of f along any line passing through z*. Assume, to arrive
at a contradiction, that z* is not a local minimum of f and that we have f(z) < f(2*) for some
Z in the sphere centered at x* within which f is assumed convex. Then, by convexity of f, for all
a € (0,1), we have

flaz® + (1= a)z) < af(z) + (1 - a)f(Z) < f(z7),

so f decreases monotonically along the line segment connecting x* and . This contradicts the
hypothesis that z* is a local minimum of f along any line passing through z*.

(b) We first show that the function g : R — R defined by g(a) = f(2* + ad) has a local minimum
at a = 0 for all d € R%. We have

g(a) = f(z" + ad) = (ads — pan%)(adg — and%) = a2(d2 — pad%)(dg — qad%).
Also,
g' () = 2a(dy — pad?)(dy — qad?) + o (—pds ) (da — qod;) + o*(dz — pad? ) (—qdy).
Thus ¢'(0) = 0. Furthermore,

9" (a) = 2(ds — pad?)(ds — qad?) + 2a(—pd})(da — gad})
+ 2a(dy — padi)(—qdi) + 2a(—pd3)(ds — gad?) + o*(—pdi)(—qd?)
+ 2a(dy — pad?)(—qd}) + o*(—pd)(—qd?).

Thus ¢”(0) = 2d3, which is positive if dy # 0. If dy = 0, g(a) = pga’td}, which is clearly minimized
at a = 0. Therefore, (0,0) is a local minimum of f along every line that passes through (0,0).

We now show that if p < m < ¢, f(y,my?) < 0 if y # 0 and that f(y,my?) = 0 otherwise.
Consider a point of the form (y, my?). We have f(y, my?) = y*(m—p)(m—q). Clearly, f(y, my?) < 0
if and only if p < m < g and y # 0. In any e—neighborhood of (0,0), there exists a y # 0 such
that for some m € (p, q), (y, my?) also belongs to the neighborhood. Since f(0,0) = 0, we see that
(0,0) is not a local minimum.



Problem 4

(a) Consider the quadratic program

minimize 1/2 |z|* + ¢z
! (1)
subject to Ax =0

where ¢ € R™ and A is an m x n matrix of rank m. Use the Projection Theorem to show that
o= —(I - A(AA) T A)c

is the unique solution.
(b) Consider the more general quadratic program

minimize 1/2 (z — z)'Q(z — %) + (v — 7)

) (2)

subject to Ax =b

where ¢ and A are as before, () is a symmetric positive definite matrix, b € R™, and Z is a vector
in R"™, which is feasible, i.e., satisfies A7 = b. Use the transformation y = Q/ 2(z — Z) to write this
problem in the form of part (a) and show that the optimal solution is

=7 —Q lc—AN),

where )\ is given by

A= (AQ 14 1At

(¢) Apply the result of part (b) to the program
minixmize 1/2 2'Qx + )
subject to Ax =1b

and show that the optimal solution is

= —Q (c— AN — A(AQ™1 A Mp).

Solution.
(a) By adding the constant term 1/2||¢||? to the cost function, we can equivalently write this problem

as
minimize  1/2||c + x|
x

subject to Az =0

which is the problem of projecting the vector —c on the subspace X = {z | Az = 0}. By the
optimality condition for projection, a vector z* such that Az* = 0 is the unique projection if and
only if

(c+2*)x =0, V ¢ with Az = 0.

It can be seen that the vector
o= —(I - A(AA) T A)c

satisfies this condition and is thus the unique solution of the quadratic programming problem in
(a). (The matrix AA’ is invertible because A has rank m.)



(b) By introducing the transformation y = Q'/?(z — Z), we can write the problem as
!/
minimize  1/2]|y||* + (Qfl/zc) Yy
y
subject to AQ_l/Zy =0

Using part (a), we see that the solution of this problem is
y* _ _ (I _ Q—1/2A/ (AQ—IA/)—l AQ_1/2> Q_1/2C

and by passing to the z-coordinate system through the inverse transformation z* — z = Q~1/2y*,

we obtain the optimal solution
F=7—-Q lc—AN),

where A is given by

A= (AQtAN T AQ e (4)

(c¢) The quadratic program in part (b) contains as a special case the program

minimize 1 /22'Qx + 'z

subject to Ax =b
This special case is obtained when Z is given by

T=Q 1A (AQ A b (5)
Indeed z as given above satisfies AZ = b as required, and for all x with Ax = b, we have

2'Qz = 2’ A'(AQTA) b =1 (AQ 1A b,
which implies that for all z with Az = b,
1/2(x —2)'Q(x — ) + (v — &) = 1/22'Qa + 'z + (1/27'Qz — 'z — V' (AQ T A") ).

The last term in parentheses on the right-hand side above is constant, thus establishing that the
programs (2) and (3) have the same optimal solution when Z is given by Eq. 5. Therefore, we
obtain the optimal solution of program (3):

gt =-Q ' (c— AN-A(AQTTA) ),

where A is given by Eq. 4.



Problem 5

Let X be a closed convex subset of R", and let f : R™ — (—00, 00| be a closed convex function such
that X Ndom(f) # 0. Assume that f and X have no common nonzero direction of recession. Let
X* be the set of minima of f over X (which is nonempty and compact), and let f* = inf,cx f(x).
Show that:

(a) For every € > 0 there exists a 6 > 0 such that every vector z € X with f(z) < f* 4 ¢§ satisfies
ming«ex+ ||z — 2*|| <e.

(b) If f is real-valued, for every 6 > 0 there exists an € > 0 such that every vector z € X with
ming-c x+ ||z — x*|| < € satisfies f(x) < f*+9.

(c) Every sequence {z} C X satisfying f(x) — f* is bounded and all its limit points belong to X*.

Solution.
(a) Let € > 0 be given. Assume, to arrive at a contradiction, that for any sequence {d;} with d; | 0,
there exists a sequence {x} € X such that for all &

< flzx) < f*+ 0k, min ||z — z*|| > e
rreX*

It follows that, for all k, z; belongs to the set {x € X | f(x) < f* + dp}, which is compact since
f and X are closed and have no common nonzero direction of recession. Therefore, the sequence
{z}} has a limit point Z € X, which using also the lower semicontinuity of f, satisfies

f@) <lmint fo) = £, |7-a7] 26 Va'e X",
a contradiction.

(b) Let 6 > 0 be given. Assume, to arrive at a contradiction, that there exist sequences {1} C X,
{z;} € X*, and {€;} with €; | 0 such that

f(xg) > 7+, |zr — 23] < e, VE=0,1,...

(here z7 is the projection of zj on X*). Since X* is compact, there is a subsequence {z} }x that
converges to some x* € X*. It follows that {xj}x also converges to z*. Since f is real-valued, it is
continuous, so we must have f(z;) — f(z*), a contradiction.

(c) Let & be a limit point of the sequence {zj} C X satisfying f(xr) — f*. By lower semicontinuity
of f, we have that

f(@) < liminf f(a) = f*

Because {z;} € X and X is closed, we have Z € X, which in view of the preceding relation implies
that f(z) = f*, ie,z € X*.
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