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Problem 1

(a) Let C' be a nonempty subset of R", and let A\; and A9 be positive scalars. Show that if C is
convex, then (A1 + A2)C = A\ C + X\2C. Show by example that this need not be true when C' is not
convex.

(b) Show that the intersection N;c;C; of a collection {C; | i € I} of cones is a cone.

(c) Show that the image and the inverse image of a cone under a linear transformation is a cone.
(d) Show that the vector sum C; + Cj of two cones Cy and Cs is a cone.

(e) Show that a subset C' is a convex cone if and only if it is closed under addition and positive
scalar multiplication, i.e., C'+ C C C, and vC C C for all v > 0.

Solution.

(a) We always have (A + X2)C' C \C' + \2C, even if C' is not convex. To show the reverse inclusion
assuming C is convex, note that a vector z in \yC + A3C' is of the form x = A\jx1 + Aoxo, where
x1,22 € C. By convexity of C, we have
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x9 € C,

and it follows that
x = ANx1+ Az € (M1 + \2)C,

so MC + \C C ()\1 + )\2)0.

For a counterexample when C' is not convex, let C be a set in R" consisting of two vectors, 0
and x # 0, and let A\; = Ay = 1. Then C is not convex, and (A + A\2)C' = 2C = {0,2z}, while
AMC 4+ X0 =C+ C ={0,z,2z}, showing that (A1 + A2)C # M C + XoC.

(b) Let € N;erC; and let o be a positive scalar. Since x € C; for all i € I and each C; is
a cone, the vector ax belongs to C; for all ¢ € I. Hence, azx € N;c;C;, showing that N;crC; is a cone.

(c) First we prove that A-C is a cone, where A is a linear transformation and A-C' is the image
of C' under A. Let z € A-C and let o be a positive scalar. Then, Az = z for some x € C, and
since C is a cone, ax € C. Because A(ax) = az, the vector az is in A - C, showing that A-C'is a
cone.

Next we prove that the inverse image A~!-C of C under A is a cone. Let € A~!-C and let «
be a positive scalar. Then Az € C, and since C' is a cone, «Ax € C. Thus, the vector A(ax) € C,
implying that az € A~! - C, and showing that A~! - C is a cone.

(d) Let € C1 + C and let a be a positive scalar. Then, x = 1 + 5 for some z; € C; and
x9 € (9, and since C7 and Cy are cones, axy € C1 and axe € Cy. Hence, ax = axi+axe € C1+CY,



showing that Cy + C5 is a cone.

(e) Let C be a convex cone. Then vC' C C, for all v > 0, by the definition of cone. Furthermore,
by convexity of C, for all x,y € C, we have z € C, where

1
z= §(ac+y).

Hence (z 4+ y) = 2z € C, since C'is a cone, and it follows that C + C C C.

Conversely, assume that C' + C C C, and vC C C. Then C is a cone. Furthermore, if z,y € C
and a € (0,1), we have ax € C and (1 — o)y € C, and ar + (1 — a)y € C (since C + C C C).
Hence C is convex.

Problem 2

Let C be a nonempty convex subset of R™. Let also f = (fi,...,fm), where f; : C — R,
i=1,...,m, are convex functions, and let g : R™ +— R be a function that is convex and monoton-
ically nondecreasing over a convex set that contains the set {f(z) | z € C}, in the sense that for
all uq,ug in this set such that u; < wug, we have g(u;) < g(uz). Show that the function h defined
by h(x) = g(f(x)) is convex over C. If in addition, m = 1, g is monotonically increasing and f is
strictly convex, then h is strictly convex.

Solution.
Let z,y € R™ and let a € [0, 1]. By the definitions of h and f, we have
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= ah(z) + (1 = a)h(y) (1)

where the first inequality follows by convexity of each f; and monotonicity of g, while the second
inequality follows by convexity of g.

If m = 1, g is monotonically increasing, and f is strictly convex, then the first inequality is
strict whenever x # y and « € (0, 1), showing that A is strictly convex.



Problem 3

Show that the following functions from R"™ to (—oo, c0| are convex:

(a) fi(z) =In(e™ + - +e™).

(b) fo(@) = [[=[| with p > 1.

(¢) fs(x) = P47 where A is a positive semidefinite symmetric n x n matrix and 3 is a positive
scalar.

(d) fa(x) = f(Ax +b), where f: R™ +— R is a convex function, A is an m X n matrix, and b is a
vector in R™.

Solution.
(a) We show that the Hessian of f is positive semidefinite at all z € R". Let (z) = €™ + .- +¢®".
Then a straightforward calculation yields
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Hence by the previous problem, fi is convex.

(b) The function fa(x) = ||z||P can be viewed as a composition g(f(z)) of the scalar function
g(t) = t? with p > 1 and the function f(x) = ||z||. In this case, g is convex and monotonically
increasing over the nonnegative axis, the set of values that f can take, while f is convex over R"

(since any vector norm is convex). From problem 2, it follows that the function fo(x) = [|z||P is
convex over R"™.

(¢) The function f3(z) = eX'4% can be viewed as a composition g(f(z)) of the function g(t) = e®

for t € R and the function f(x) = 2’ Az for x € R"™. In this case, ¢ is convex and monotonically
increasing over R, while f is convex over R" (since A is positive semidefinite). From problem 2, it
follows that f3 is convex over R".

(d) This part is straightforward using the definition of a convex function.

Problem 4

Let X be a nonempty bounded subset of R™. Show that
cl(conv(X)) = conv(cl(X)).

In particular, if X is compact, then conv(X) is compact.

Solution.
The set ¢l(X) is compact since X is bounded by assumption. Hence, its convex hull, conv(cl(X)),
is compact, and it follows that

cl(conv(X)) C cl(conv(cl(X))) = conv(cl(X)).

It is also true that
conv(cl(X)) C conv(cl(conv(X))) = cl(conv(X)),

since, the closure of a convex set is convex. Hence, the result follows.



Problem 5

Construct an example of a point in a nonconvex set X that has the prolongation property, but is
not a relative interior point of X.

Solution.
Take two intersecting lines in the plane, and consider the point of intersection.
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