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Problem 1 

(a) Let C be a nonempty subset of Rn, and let λ1 and λ2 be positive scalars. Show that if C is 
convex, then (λ1 + λ2)C = λ1C + λ2C. Show by example that this need not be true when C is not 
convex. 
(b) Show that the intersection ∩i∈I Ci of a collection {Ci | i ∈ I} of cones is a cone. 
(c) Show that the image and the inverse image of a cone under a linear transformation is a cone. 
(d) Show that the vector sum C1 + C2 of two cones C1 and C2 is a cone. 
(e) Show that a subset C is a convex cone if and only if it is closed under addition and positive 
scalar multiplication, i.e., C + C ⊂ C, and γC ⊂ C for all γ > 0. 

Solution. 
(a) We always have (λ1 + λ2)C ⊂ λ1C +λ2C, even if C is not convex. To show the reverse inclusion 
assuming C is convex, note that a vector x in λ1C + λ2C is of the form x = λ1x1 + λ2x2, where 
x1, x2 ∈ C. By convexity of C, we have 

λ1 λ2 
x1 + x2 ∈ C, 

λ1 + λ2 λ1 + λ2 

and it follows that 
x = λ1x1 + λ2x2 ∈ (λ1 + λ2)C, 

so λ1C + λ2C ⊂ (λ1 + λ2)C. 
For a counterexample when C is not convex, let C be a set in Rn consisting of two vectors, 0 

and x =� 0, and let λ1 = λ2 = 1. Then C is not convex, and (λ1 + λ2)C = 2C = {0, 2x}, while 
λ1C + λ2C = C + C = {0, x, 2x}, showing that (λ1 + λ2)C =� λ1C + λ2C. 

(b) Let x ∈ ∩i∈I Ci and let α be a positive scalar. Since x ∈ Ci for all i ∈ I and each Ci is 
a cone, the vector αx belongs to Ci for all i ∈ I. Hence, αx ∈ ∩i∈I Ci, showing that ∩i∈I Ci is a cone. 

(c) First we prove that A C is a cone, where A is a linear transformation and A C is the image · · 
of C under A. Let z ∈ A C and let α be a positive scalar. Then, Ax = z for some x ∈ C, and · 
since C is a cone, αx ∈ C. Because A(αx) = αz, the vector αz is in A C, showing that A C is a · · 
cone. 

Next we prove that the inverse image A−1 C of C under A is a cone. Let x ∈ A−1 C and let α· · 
be a positive scalar. Then Ax ∈ C, and since C is a cone, αAx ∈ C. Thus, the vector A(αx) ∈ C, 
implying that αx ∈ A−1 C, and showing that A−1 C is a cone. · · 

(d) Let x ∈ C1 + C2 and let α be a positive scalar. Then, x = x1 + x2 for some x1 ∈ C1 and 
x2 ∈ C2, and since C1 and C2 are cones, αx1 ∈ C1 and αx2 ∈ C2. Hence, αx = αx1 +αx2 ∈ C1 +C2, 
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showing that C1 + C2 is a cone. 

(e) Let C be a convex cone. Then γC ⊂ C, for all γ > 0, by the definition of cone. Furthermore, 
by convexity of C, for all x, y ∈ C, we have z ∈ C, where 

1 
z = (x + y). 
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Hence (x + y) = 2z ∈ C, since C is a cone, and it follows that C + C ⊂ C. 
Conversely, assume that C + C ⊂ C, and γC ⊂ C. Then C is a cone. Furthermore, if x, y ∈ C 

and α ∈ (0, 1), we have αx ∈ C and (1 − α)y ∈ C, and αx + (1 − α)y ∈ C (since C + C ⊂ C). 
Hence C is convex. 

Problem 2 

Let C be a nonempty convex subset of Rn . Let also f = (f1, . . . , fm), where fi : C �→ �, 
i = 1, . . . ,m, are convex functions, and let g : Rm �→ R be a function that is convex and monoton­
ically nondecreasing over a convex set that contains the set {f(x) | x ∈ C}, in the sense that for 
all u1, u2 in this set such that u1 ≤ u2, we have g(u1) ≤ g(u2). Show that the function h defined 
by h(x) = g(f(x)) is convex over C. If in addition, m = 1, g is monotonically increasing and f is 
strictly convex, then h is strictly convex. 

Solution.

Let x, y ∈ Rn and let α ∈ [0, 1]. By the definitions of h and f , we have


h(αx + (1 − α)y) = g(f(αx + (1 − α)y)) 

= g(f1(αx + (1 − α)y), . . . , fm(αx + (1 − α)y)) 

≤ g(αf1(x) + (1 − α)f1(y), . . . , αfm(x) + (1 − α)fm(y)) 

= g(α(f1(x), . . . , fm(x)) + (1 − α)(f1(y), . . . , fm(y))) 

≤ αg(f1(x), . . . , fm(x)) + (1 − α)g(f1(y), . . . , fm(y)) 

= αg(f(x)) + (1 − α)g(f(y)) 

= αh(x) + (1 − α)h(y) (1) 

where the first inequality follows by convexity of each fi and monotonicity of g, while the second 
inequality follows by convexity of g. 

If m = 1, g is monotonically increasing, and f is strictly convex, then the first inequality is 
strict whenever x =� y and α ∈ (0, 1), showing that h is strictly convex. 
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Problem 3 

Show that the following functions from Rn to (−∞, ∞] are convex: 
(a) f1(x) = ln(ex1 + + exn ).· · · 
(b) f2(x) = �x�p with p ≥ 1. 
(c) f3(x) = eβx

�Ax, where A is a positive semidefinite symmetric n × n matrix and β is a positive 
scalar. 
(d) f4(x) = f(Ax + b), where f : Rm �→ R is a convex function, A is an m × n matrix, and b is a 
vector in Rm . 

Solution. 
(a) We show that the Hessian of f1 is positive semidefinite at all x ∈ Rn . Let ( x) = ex1 + + exn .· · · 

¯ Then a straightforward calculation yields 

n n
1 �� 

z��2f1(x)z =
(x)2 e(xi+xj )(zi − zj )

2 ≥ 0, ∀ z ∈ Rn . 

¯ i=1 j=1 

Hence by the previous problem, f1 is convex. 

(b) The function f2(x) = �x�p can be viewed as a composition g(f(x)) of the scalar function 
g(t) = tp with p ≥ 1 and the function f(x) = �x�. In this case, g is convex and monotonically 
increasing over the nonnegative axis, the set of values that f can take, while f is convex over Rn 

(since any vector norm is convex). From problem 2, it follows that the function f2(x) = �x�p is 
convex over Rn . 

(c) The function f3(x) = ex
�Ax can be viewed as a composition g(f(x)) of the function g(t) = et ¯ ¯ 

for t ∈ R and the function f(x) = x�Ax for x ∈ Rn . In this case, g is convex and monotonically 
increasing over R, while f is convex over Rn (since A is positive semidefinite). From problem 2, it 
follows that f3 is convex over Rn . 

(d) This part is straightforward using the definition of a convex function. 

Problem 4 

Let X be a nonempty bounded subset of Rn . Show that 

cl(conv(X)) = conv(cl(X)). 

In particular, if X is compact, then conv(X) is compact. 

Solution.

The set cl(X) is compact since X is bounded by assumption. Hence, its convex hull, conv(cl(X)),

is compact, and it follows that


cl(conv(X)) ⊂ cl(conv(cl(X))) = conv(cl(X)). 

It is also true that 
conv(cl(X)) ⊂ conv(cl(conv(X))) = cl(conv(X)), 

since, the closure of a convex set is convex. Hence, the result follows. 
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Problem 5 

Construct an example of a point in a nonconvex set X that has the prolongation property, but is

not a relative interior point of X.


Solution.

Take two intersecting lines in the plane, and consider the point of intersection.
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