6.252 NONLINEAR PROGRAMMING
LECTURE 21: DUAL COMPUTATIONAL METHODS
LECTURE OUTLINE

o Dual Methods
o Nondifferentiable Optimization
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o Consider the primal problem

minimize f(z)
subjectto z € X, gi(z) <0, g=1...,m

assuming —oco < f* < oo.
o Dual problem: Maximize

q(p) = inf L(z,p) = inf {f(z)+ u'g(z)}
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subject to p > 0.



PROS AND CONS FOR SOLVING THE DUAL

e The dual is concave.

o The dual may have smaller dimension and/or
simpler constraints.

o If there is no duality gap and the dual is solved
exactly for a Lagrange multiplier ».*, all optimal pri-
mal solutions can be obtained by minimizing the
Lagrangian L(z,u*) OVer z € X.

e Even if there is a duality gap, q(x) is a lower
bound to the optimal primal value for every . > o.

o Evaluating ¢(x) requires minimization of L(x, 1)
over z € X.

e The dual function is often nondifferentiable.

o Even if we find an optimal dual solution .*, it may
be difficult to obtain a primal optimal solution.



STRUCTURE

o Separablility: Classical duality structure (La-
grangian relaxation).

o Partitioning: The problem
minimize F(z) + G(y)
subjectto Ax+By=¢, z€X, yeyY
can be written as
minimize F(z) + inf G(y)

By=c—Ax,yeY

subjectto z € X.

With no duality gap, this problem is written as
minimize F(z) + Q(Ax)

subjectto z € X,

where
Q(Ax) = max q(A, Ax)

g\, Ax) = ylg{/{G(y) + N (Az + By — c)}



DUAL DERIVATIVES

o Let

— in L(x, p) = i / .
Ty = arg min (z, ) argarjrél)r;{f(fv)Jrug(w)}

Then for all z € %,

a(f) = inf { f(z) +i'g(x) }

< flew) + i g(zy)
= flzp) +1'g(zy) + (B — p) g(zy)

=q(p) + (o —p) g(xp).

o ThUS g(z,) is a subgradient of q at p.

o Proposition: Let X be compact, and let f and ¢4
be continuous over x. Assume also that for every
w, L(z, 1) IS mMinimized over z € X at a unique point
z,. IThen, q Is everywhere continuously differen-
tiable and

Va(p) = g(zu), VoueR.



NONDIFFERENTIABLE DUAL

o If there exists a duality gap, the dual function is
nondifferentiable at every dual optimal solution.

o Important nondifferentiable case: When 4 Is
polyhedral, that is,

q(p) = l;nei?{a;u +bi },

where I is a finite index set, and a; € %" and b,
are given (arises when x Is a discrete set, as in
Integer programming).

o Proposition: Let ¢ be polyhedral as above, and
let 1, be the set of indices attaining the minimum

Iy = {Z €1 |a;p+Db =q(u)}-

The set of all subgradients of ¢ at . IS
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NONDIFFERENTIABLE OPTIMIZATION

o Consider maximization of q(n) over M = {| u >

e Subgradient method:
Iuk—|-1 _ [,uk —I—Skgk}+,

where ¢* is the subgradient g(z,x), []T denotes

projection on the closed convex set M, and s* Is a
positive scalar stepsize.
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KEY SUBGRADIENT METHOD PROPERTY

e For a small stepsize it reduces the Euclidean
distance to the optimum.

Contours of g
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e Proposition: For any dual optimal solution ..*,

we have

k+1

[Tt — ) < |l =,

for all stepsizes s* such that

2(q(p*) — q(u*))

0 < sk <
g% |2




STEPSIZE RULES

o Diminishing stepsize is one possibility.
e More common method:
o aF(d" —q(uh))

S p—
lgkiz

where ¢* ~ ¢* and

0<af <2

e Some possibilities:

— ¢*i1sthe best known upper boundto ¢*; o® =
and o* decreased by a certain factor every
few iterations.

— oF =1 forall Kk and
a* = (14 B8(k))d",

where ¢* = maxg<;<y q(u?), and g(k) > 0 1S
adjusted depending on algorithmic progress
of the algorithm.



