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6.252 NONLINEAR PROGRAMMING


LECTURE 21: DUAL COMPUTATIONAL METHODS


LECTURE OUTLINE


• Dual Methods 

•	 Nondifferentiable Optimization 

******************************** 

• Consider the primal problem 

minimize f (x)


subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r,


assuming −∞ < f  ∗ < ∞. 

•	 Dual problem: Maximize 

q(µ) =  inf L(x, µ) =  inf 
x∈X

{f (x) +  µ g(x)}
x∈X 

subject to µ ≥ 0.




PROS AND CONS FOR SOLVING THE DUAL


• The dual is concave. 

• The dual may have smaller dimension and/or 
simpler constraints. 

• If there is no duality gap and the dual is solved 
exactly for a Lagrange multiplier µ ∗ , all optimal pri-
mal solutions can be obtained by minimizing the 
Lagrangian L(x, µ ∗) over x ∈ X. 

• Even if there is a duality gap, q(µ) is a lower 
bound to the optimal primal value for every µ ≥ 0. 

• Evaluating q(µ) requires minimization of L(x, µ) 

over x ∈ X. 

• The dual function is often nondifferentiable. 

• Even if we find an optimal dual solution µ ∗, it may 
be difficult to obtain a primal optimal solution. 
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STRUCTURE


• Separability: Classical duality structure (La-
grangian relaxation). 

• Partitioning: The problem 

minimize F (x) +  G(y)


subject to Ax + By = c, x ∈ X, y ∈ Y


can be written as 

minimize F (x) +  inf G(y) 
By=c−Ax, y∈Y 

subject to x ∈ X. 

With no duality gap, this problem is written as 
minimize F (x) +  Q(Ax) 

subject to x ∈ X, 

where 
Q(Ax) =  max q(λ, Ax) 

λ 

q(λ, Ax) =  inf G(y) +  λ′(Ax + By − c) 
y∈Y 



� � ′ 

� � ′ 

′ 

DUAL DERIVATIVES


• Let 

xµ = arg min L(x, µ) =  arg min f(x) +  µ g(x) . 
x∈X x∈X 

Then for all µ ∈ �r, 

µ) =  inf f (x) + ˜q(˜ µ g(x) 
x∈X 

≤ f(xµ) + µ̃ g(xµ) 

= f(xµ) +  µ g(xµ) + (˜′ µ − µ)′ g(xµ) 

= q(µ) + (µ̃ − µ)′ g(xµ). 

• Thus g(xµ) is a subgradient of q at µ. 

• Proposition: Let X be compact, and let f and g 

be continuous over X. Assume also that for every 
µ, L(x, µ) is minimized over x ∈ X at a unique point 
xµ. Then, q is everywhere continuously differen-
tiable and 

∇q(µ) =  g(xµ), ∀ µ ∈ �r . 
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NONDIFFERENTIABLE DUAL


• If there exists a duality gap, the dual function is 
nondifferentiable at every dual optimal solution. 

• Important nondifferentiable case: When q is 
polyhedral, that is, 

q(µ) =  min aiµ + bi , 
i∈I 

where I is a finite index set, and ai ∈ �r and bi 

are given (arises when X is a discrete set, as in 
integer programming). 

• Proposition: Let q be polyhedral as above, and 
let Iµ be the set of indices attaining the minimum 

Iµ = i ∈ I | aiµ + bi = q(µ) . 

The set of all subgradients of q at µ is 

  
 �  

∂q(µ) =  g � g = ξiai, ξi ≥ 0, ξi = 1  . 
 


i∈Iµ i∈Iµ
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NONDIFFERENTIABLE OPTIMIZATION


• Consider maximization of q(µ) over M = {| µ ≥ 
0, q(µ) > −∞} 

• Subgradient method: 

k+1 = µ k + s k g

�+k ,µ


where gk is the subgradient g(x µk ), [·]+ denotes 
projection on the closed convex set M , and sk is a 
positive scalar stepsize. 

M 

gk 

µk 

[µk + skgk]+ 

µ* 

Contours of q 

µk + skgk




� � 

KEY SUBGRADIENT METHOD PROPERTY


• For a  small stepsize it reduces the Euclidean 
distance to the optimum. 

M 

gk 

µk 

µk + skgk 

µk+1 = [µk + skgk]+ 
µ* 

< 90o 

Contours of q 

• Proposition: For any dual optimal solution µ ∗ , 
we have 

∗ ‖µ k+1 − µ ∗ ‖ < ‖µ k − µ ‖, 

for all stepsizes sk such that 

2
 q(µ ∗) − q(µk)

0 < sk <
 .


‖gk‖2
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STEPSIZE RULES


• Diminishing stepsize is one possibility. 

• More common method: 

αk qk − q(µk)
k s = ,

‖gk‖2 

where qk ≈ q ∗ and 

0 < αk < 2. 

• Some possibilities: 
−	 qk is the best known upper bound to q ∗; α0 = 1  

and αk decreased by a certain factor every 
few iterations. 

− αk = 1  for all k and 

q k = 1 +  β(k) ˆk ,q 

where q̂k = max0≤i≤k q(µ
i), and β(k) > 0 is 

adjusted depending on algorithmic progress 
of the algorithm. 


