
6.252 NONLINEAR PROGRAMMING


LECTURE 20: STRONG DUALITY


LECTURE OUTLINE


• Strong Duality Theorem 

•	 Linear equality constraints. Fenchel Duality. 

******************************** 

• Consider the problem 

minimize f (x)


subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r,


assuming −∞ < f  ∗ < ∞. 

• µ ∗ is a Lagrange multiplier if µ ∗ ≥ 0 and f∗ = 

infx∈X L(x, µ ∗). 

• Dual problem: Maximize q(µ) =  infx∈X L(x, µ) 

subject to µ ≥ 0. 



DUALITY THEOREM FOR INEQUALITIES


• Assume that X is convex and the functions 
f : �n �→ �, gj : �n �→ �  are convex over X. Fur-
thermore, the optimal value f∗ is finite and there 
exists a vector x̄ ∈ X such that 

gj (x̄) < 0, ∀ j = 1, . . . , r. 

• Strong Duality Theorem: There exists at least 
one Lagrange multiplier and there is no duality 
gap. 
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A = {(z,w) | there is an x in X such that g(x) ≤ z, f(x) ≤ w} 

(g(x),f(x)) S = {(g(x),f(x)) | x ∈ X} 



{ } 

PROOF OUTLINE


• Show that A is convex. [Consider vectors (z, w) ∈ 
A and (˜ w) ∈ A, and show that their convex com-z, ̃  

binations lie in A.] 

• Observe that (0, f∗) is not an interior point of A. 

• Hence, there is hyperplane passing through 
(0, f  ∗) and containing A in one of the two corre-
sponding halfspaces; i.e., a (µ, β) 	= (0, 0) with 

∗ ′βf ≤ βw + µ z, ∀ (z, w) ∈ A.


This implies that β ≥ 0, and µj ≥ 0 for all j. 

• Prove that hyperplane is nonvertical, i.e., β >  0. 

• Normalize (β = 1), take the infimum over x ∈ X, 
and use the fact µ ≥ 0, to obtain 

∗ ′ ∗ f ≤ inf f(x) +  µ g(x) = q(µ) ≤ sup q(µ) =  q . 
x∈X µ≥0 

Using the weak duality theorem, µ is a Lagrange 
multiplier and there is no duality gap. 



′ 
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LINEAR EQUALITY CONSTRAINTS 

• Suppose we have the additional constraints 

ix − di = 0, i = 1, . . . , m 
e


• We need the notion of the affine hull of a convex 
set X [denoted aff(X)]. This is the intersection of 
all hyperplanes containing X. 

• The relative interior of X, denoted ri(X), is the set 
of all x ∈ X s.t. there exists � >  0 with 

⊂ X,
z | ‖z − x‖ < �, z ∈ aff (X)


that is, ri(X) is the interior of X relative to aff (X). 

• Every nonempty convex set has a nonempty 
relative interior. 



′ 

DUALITY THEOREM FOR EQUALITIES


• Assumptions: 
−	 The set X is convex and the functions f , gj 

are convex over X. 
−	 The optimal value f∗ is finite and there exists 

a vector x̄ ∈ ri(X) such that 

gj (x̄) < 0, j = 1, . . . , r, 

e
i
̄x − di = 0, i = 1, . . . , m. 

• Under the preceding assumptions there exists 
at least one Lagrange multiplier and there is no 
duality gap. 
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COUNTEREXAMPLE


• Consider 

minimize f (x) =  x1 

2subject to x2 = 0, x ∈ X = (x1, x2) | x1 ≤ x2 . 

• The optimal solution is x ∗ = (0, 0) and f ∗ = 0. 

• The dual function is given by 

− 
4
1 
λ 

, if λ >  0,
infq(λ) =  
1≤x2

{x1 + λx2} = 
−∞, if λ ≤ 0.x2 

• No dual optimal solution and therefore there is 
no Lagrange multiplier. (Even though there is no 
duality gap.) 

• Assumptions are violated (the feasible set and 
the relative interior of X have no common point). 
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FENCHEL DUALITY FRAMEWORK


• Consider the problem 

minimize f1(x) − f2(x) 

subject to x ∈ X1 ∩ X2, 

where f1 and f2 are real-valued functions on �n, 
and X1 and X2 are subsets of �n. 

• Assume that −∞ < f  ∗ < ∞. 

• Convert problem to 

minimize f1(y) − f2(z)


subject to z = y, y ∈ X1, z ∈ X2,


and dualize the constraint z = y. 

q(λ) =  inf f1(y) − f2(z) + (z − y)′λ 
y∈X1, z∈X2 

= inf z ′λ − f2(z) − sup y ′λ − f1(y) 
z∈X2 y∈X1 

= g2(λ) − g1(λ)
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DUALITY THEOREM
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Slope = λ 

sup 2(x) - x'λ} = - g2(λ) 
x ∈ X2 

f2(x) 

X2 

Slope = λ 

x x 

{f

inf {f1(x) - x'λ} = - g1(λ) 
x ∈ X1 

• Assume that 
− X1 and X2 are convex 
−	 f1 and f2 are convex and concave over X1 

and X2, respectively 
− The relative interiors of X1 and X2 intersect 

• The duality theorem for equalities applies and 
shows that 

∗ f = max g2(λ) − g1(λ) 
λ∈�n 

and that the maximum above is attained. 


