6.252 NONLINEAR PROGRAMMING
_ECTURE 17: AUGMENTED LAGRANGIAN METHODS
LECTURE OUTLINE

o Multiplier Methods
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o Consider the equality constrained problem
minimize f(x)

subjectto h(z) =0,

where f : ®* — ®and h : R — ®™ are continuously
differentiable.

e The (1st order) multiplier method finds
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o = arg min Lo (2, \*) = (@) + Nh(@) + - [h()||?

and updates )\* using

AL = 2P 4 Fh(a”)



CONVEX EXAMPLE

e Problem: min,,—1(1/2)(z? + 22) with optlmal SO-
lution z* = (1,0) and Lagr. multiplier \* =

e We have
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o We see that:
— A — x = —1and zF — z* = (1,0) for ev-
ery nondecreasing sequence {c*}. Itis NOT
necessary to increase c* to co.

— The convergence rate becomes faster as c¢*
becomes larger; in fact {|\* —x*|} converges

superlinearly if ¢¢ — oo.



NONCONVEX EXAMPLE

e Problem: min,,—1(1/2)(—22 + 22) with optimal so-
lution z* = (1,0) and Lagr. multiplier x* = 1.

e We have
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provided c* > 1 (otherwise the min does not exist)
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e We see that:

— Noneedtoincrease c* to o for convergence;
doing so results in faster convergence rate.

— To obtain convergence, ¢ must eventually
exceed the threshold 2.



THE PRIMAL FUNCTIONAL

e Let (z*,1*) be a regular local min-Lagr. pair sat-
Isfying the 2nd order suff. conditions are satisfied.

o The primal functional

p(u) = min f(z),

defined for « in an open sphere centered at « = 0,
and we have

p(0) = f(z™), Vp(0) = =A%,
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p(u) = min L(zf+23), p(u)= min I(-zf+z3)
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AUGM. LAGRANGIAN MINIMIZATION

o Break down the minimization of L.(-, \):

min L.(z, \) = min min {f(:v) + )\/h(a}) + §||h($)||2}

x u  h(x)=u

= min { p(u) + X+ 5 [luf*}

u

where the minimization above Is understood to
be local in a neighborhood of » = o.

o Interpretation of this minimization:

Penalized Primal Function

A p(u) +-5 [lull2
Slope = - A \ /Slope =- A
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o If cis suf. large, p(u) + Xu + £|lul|? IS conveX In
a neighborhood of 0. Also, for x ~ A* and large «,
the value min, L.(z, \) = p(0) = f(z*).



INTERPRETATION OF THE METHOD

o Geometric interpretation of the iteration
AL — Ak cFR(ah).
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o If X* Is sufficiently close to x* and/or ¢* Is suf.
large, \**1 will be closer to \* than \F.

e c* need not be increased to «~ In order to ob-
tain convergence; it is sufficient that ¢ eventually
exceeds some threshold level.

o Ifp(w)islinear, convergence to x* will be achieved
INn one iteration.



COMPUTATIONAL ASPECTS

o Key issue is how to select {c*}.

— cF should eventually become larger than the
“threshold” of the given problem.

— ¢® should not be so large as to cause |ll-
conditioning at the 1st minimization.

— ¢F should not be increased so fast that too
much ill-conditioning is forced upon the un-
constrained minimization too early.

— ¢* should not be increased so slowly that
the multiplier iteration has poor convergence
rate.

e A good practical scheme is to choose a mod-
erate value <, and use ¢*+1 = 3¢k, where g IS a
scalar with g > 1 (typically g € [5,10] If a Newton-
like method is used).

e In practice the minimization of L . (z, \*) IS typ-
ically inexact (usually exact asymptotically). In
some variants of the method, only one Newton
step per minimization is used (with safeguards).



DUALITY FRAMEWORK

o Consider the problem

minimize f(z) + §||h(az)||2
subjectto ||z —z*|| <€, h(z) =0,
where ¢ is small enough for a local analysis to

hold based on the implicit function theorem, and ¢
IS large enough for the minimum to exist.

o Consider the dual function and its gradient

gc(A) =  min  Lc(x, A) = L (x()\, c), )\)

[ —z* || <e

Vae(N) = Vaz(X, ¢)VeLe (z(X,¢), A) + h(z(), 0)
= h(x()\,c)).
We have vg.(\*) = h(z*) = 0 and V2g.(\*) > 0.

o The multiplier method is a steepest ascent iter-
ation for maximizing g

AL = 0P 1+ E Vg (W),



