
6.252 NONLINEAR PROGRAMMING


LECTURE 16: PENALTY METHODS


LECTURE OUTLINE


• Quadratic Penalty Methods 

• Introduction to Multiplier Methods 

******************************************* 

• Consider the equality constrained problem 

minimize f(x) 

subject to x ∈ X, h(x) = 0, 

where f : �n → �  and h : �n → �m are continuous, 
and X is closed. 

• The quadratic penalty method: 

x
k = arg min 
x∈X 

L ck (x, λk) ≡ f (x) +  λk′ 
h(x) + 


ck 

‖h(x)‖2 

2 

where the {λk} is a bounded sequence and {ck}
satisfies 0 < ck < ck+1 for all k and ck → ∞. 



{ 

TWO CONVERGENCE MECHANISMS


• Taking λk close to a Lagrange multiplier vector 
−	 Assume X = �n and (x ∗, λ∗) is a local min-

Lagrange multiplier pair satisfying the 2nd 
order sufficiency conditions 

− For c suff. large, x ∗ is a strict local min of 
Lc(·, λ∗)


•	 Taking ck very large 
− For large c and any λ 

Lc(·, λ) ≈
 f(x) if x ∈ X and h(x) = 0  

∞ otherwise 

• Example: 

2 (x1 + x2)minimize f (x) =  1 2 2 

subject to x1 = 1  

2 (x1 + x2) +  λ(x1 − 1) +Lc(x, λ) =  1 2 2 c 

2
(x1 − 1)2 

x1(λ, c) = 

c − λ 

c + 1  
, x2(λ, c) = 0  



EXAMPLE CONTINUED


2 2 ∗ ∗ min x1 + x2, x = 1, λ = −1 
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GLOBAL CONVERGENCE


• Every limit point of {xk} is a global min. 

Proof: The optimal value of the problem is f∗ = 

infh(x)=0, x∈X L ck (x, λk). We have 

L ck (x k, λk) ≤ L ck (x, λk), ∀ x ∈ X 

so taking the inf of the RHS over x ∈ X, h(x) = 0  

L ck (x k, λk) =  f (x k) +  λk′ 
h(x k) +  

ck 

‖h(x k)‖2 ≤ f ∗ . 
2 

x, λ) be a limit point of {xk, λk}. Without lossLet (¯ ¯ 

x, λ). Takingof generality, assume that {xk, λk} →  (¯ ¯ 

the limsup above 

ck 
∗ f(¯ λ′h(¯x) + ¯ x) + lim sup ‖h(x k)‖2 ≤ f . (*) 

k→∞ 2 

Since ‖h(xk)‖2 ≥ 0 and ck → ∞, it follows that 
x) = 0. Hence, ¯h(xk) → 0 and h(¯ x is feasible, and 

x) ≤ f ∗ , ¯since from Eq. (*) we have f(¯ x is optimal. 
Q.E.D. 



( ) 

( 

( 

LAGRANGE MULTIPLIER ESTIMATES


• Assume that X = �n, and f and h are cont. 
differentiable. Let {λk} be bounded, and ck → ∞. 
Assume xk satisfies ∇xL ck (xk, λk) = 0  for all k, and 
that xk → x ∗ , where x ∗ is such that ∇h(x ∗) has rank 
m. Then h(x ∗) = 0  and λ̃k → λ∗ , where 

˜ ∗ λk = λk + c kh(x k), ∇xL(x ∗ , λ 
) = 0.


Proof: We have 

0 =  ∇xLck (x k, λk) =  ∇f(x k) +  ∇h(x k) λk + c kh(x k)


= ∇f(x k) +  ∇h(x k)λ̃k . 

Multiply with )−1 
∇h(x k)′∇h(x k) ∇h(x k)′ 

and take lim to obtain λ̃k → λ∗ with 
)−1 

∇h(x∇h(x
∗ = −
 ∗ ∗ )′∇h(x ) ∗ ∗ )′∇f(x ).λ


We also have ∇xL(x ∗, λ∗) = 0  and h(x ∗) = 0  (since

˜
λk converges).
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PRACTICAL BEHAVIOR


• Three possibilities: 
−	 The method breaks down because an xk with 

∇xL ck (xk, λk) ≈ 0 cannot be found. 
−	 A sequence {xk} with ∇xL ck (xk, λk) ≈ 0 is ob-

tained, but it either has no limit points, or for 
each of its limit points x ∗ the matrix ∇h(x ∗) 

has rank < m. 
−	 A sequence {xk} with with ∇xL ck (xk, λk) ≈ 0 

is found and it has a limit point x ∗ such that 
∇h(x ∗) has rank m. Then, x ∗ together with λ∗ 

[the corresp. limit point of
 λk + ckh(xk)
 ] sat-

isfies the first-order necessary conditions. 

• Ill-conditioning: The condition number of the 
Hessian ∇2 

xxL ck (xk, λk) tends to increase with ck. 

• To overcome ill-conditioning: 
−	 Use Newton-like method (and double preci-

sion). 
− Use good starting points. 
−	 Increase ck at a moderate rate (if ck is in-

creased at a fast rate, {xk} converges faster, 
but the likelihood of ill-conditioning is greater). 
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INEQUALITY CONSTRAINTS


• Convert them to equality constraints by using 
squared slack variables that are eliminated later. 

• Convert inequality constraint gj (x) ≤ 0 to equality 
constraint gj (x) +  zj 

2 = 0. 

• The penalty method solves problems of the form 

¯minLc(x, z, λ, µ) =  f (x) 
x,z 

r 
c 

+	 µj gj (x) +  zj 
2 +

2 
|gj (x) +  zj 

2|2 , 

j=1 

for various values of µ and c. 

• First minimize L̄c(x, z, λ, µ) with respect to z, 

¯Lc(x, λ, µ) =  min Lc(x, z, λ, µ) =  f (x) 
z 

r 
c 

+ min µj gj (x) +  zj 
2 +

2 
|gj (x) +  zj 

2|2 
zj 

j=1 

and then minimize Lc(x, λ, µ) with respect to x.




MULTIPLIER METHODS


• Recall that if (x ∗, λ∗) is a local min-Lagrange 
multiplier pair satisfying the 2nd order sufficiency 
conditions, then for c suff. large, x ∗ is a strict local 
min of Lc(·, λ∗). 

• This suggests that for λk ≈ λ∗ , xk ≈ x ∗ . 

• Hence it is a good idea to use λk ≈ λ∗ , such as 

λk+1 = λ̃k = λk + c kh(x k) 

This is the (1st order) method of multipliers. 

• Key advantages to be shown: 
−	 Less ill-conditioning: It is not necessary that 

ck → ∞  (only that ck exceeds some thresh-
old). 

−	 Faster convergence when λk is updated than 
when λk is kept constant (whether ck → ∞  or 
not). 


