6.252 NONLINEAR PROGRAMMING
LECTURE 15: INTERIOR POINT METHODS
LECTURE OUTLINE

o Barrier and Interior Point Methods
o Linear Programs and the Logarithmic Barrier
o Path Following Using Newton’s Method

Inequality constrained problem

minimize f(x)
subjectto z € X, gj(x) <bj, 5=1,...,rm,

where f and g; are continuous and Xx is closed.
We assume that the set

S:{x€X|gj(a:)<O,j:1,...,'r}

IS nonempty and any feasible pointis in the closure
of S.



BARRIER METHOD

e Consider a barrier function, that Is continuous
and goes to « as any one of the constraints g;(z)
approaches 0 from negative values. Examples:

r

B(z) = — Zln{—gj(a:)}, B(z) = — Z gjtx).

j=1

e Barrier Method:

k . k
— argm B(x) !, k=0,1,...
T argxelg{f(:c) + € (az)}

where the parameter sequence {¢*} satisfies 0 <
ekt < ¢k for all k. and ¢ — 0.

e B(x)

g'<eg

P e' B(X)

Boundary of S ” Boundary of S
[




CONVERGENCE

Every limit point of a sequence {z*} generated
by a barrier method is a global minimum of the
original constrained problem

Proof: Let{z} bethe limitofasubsequence {z*},.cx.
Since z¢ ¢ s and X Is closed, z Is feasible for the
original problem. If z is not a global minimum,
there exists a feasible z* such that f(z*) < f(z)
and therefore also an interior point z € S such that
(&) < f(z). By the definition of z*, f(z*)+€*B(zF) <
f(z) + €#B(z) for all £, so by taking limit

f(@) + kjof,igéKe’“B(x’“) < f(@) < f(@)

Hence liminfy, .. kex €*B(z*) < 0.

Ifz € 5, we have lim,_, rex €"B(z") = 0,
while if z lies on the boundary of s, we have by
assumption limy_, . rex B(z*) = co. Thus

lim inf €® B(z*) > 0,

k— oo

— a contradiction.



LINEAR PROGRAMS/LOGARITHMIC BARRIER

o Apply logarithmic barrier to the linear program
minimize c'z (LP)

subjectto Az =b, x>0,

The method finds for various e > 0,
mn
— in F,(2) = ' ‘o — Inz; »,
x(€) arg;nelg () arg;nelrsl{cm EZ najz}
i=1

where 5 = {xz | Az =b, z > 0}. We assume that s is
nonempty and bounded.

o AS e — 0, z(¢) follows the central path

All central paths start at
the analytic center

mn
S Too = arg min —g Inxz; p,
x€S
i=1

and end at optimal solu-

tions of (LP).

Point x(¢) on
central path



PATH FOLLOWING W/ NEWTON’'S METHOD

o Newton’s method for minimizing F.:

T=x+ a(r —x),

where z Is the pure Newton iterate

T = arg ir;i:nb {VFE(;U)/(Z —z) + 1(z—a) V3 F.(z)(z — :1:)}

o By straightforward calculation
T =x— Xq(x,¢€),

X
q(az,e):—z—e, e=(1...1), z=c— A\,
€

A= (AX?A)TTAX (Xe— ee),
and X iIs the diagonal matrix with z;, i = 1,...,n
along the diagonal.

o View q¢(z, ¢) as the Newton increment (z—z) trans-
formed by x—1! that maps z into e.

o Consider |q(z,€)|| @S a prozximity measure Of the
current point to the point z(¢) on the central path.



KEY RESULTS

o It is sufficient to minimize F. approximately, up
to where |j¢(x, ¢)| < 1.

If « > 07 Az = b, and
|q(z, €)]| < 1, then

cx— min Jdy< e(n—l—\/ﬁ).
Ay=b,y=>0

Set {x | lla(x,£)Il < 1}

o The “termination set” {z | [lq(z,¢)|| < 1} is part

of the region of quadratic convergence of the pure
form of Newton’s method. In particular, if ||q(z, €)|| <
1, then the pure Newton iterate z = = — Xq(x,¢€) IS
an interior point, that is, z € s. Furthermore, we
have ||q(z, ¢)|| < 1 and In fact

la(@, o)l < lla(z, €)1



SHORT STEP METHODS

Following approximately the
central path by using a sin-
gle Newton step for each
ek. If € is close to eFt1

and =¥ is close to the cen-

Set {x | [la(x,e<*1)[|

Set £3
etix]lax tral path, one expects that

zk+1 obtained from z* by
a single pure Newton step
will also be close to the
central path.

Proposition Letz > 0, Az = b, and suppose that
for some v < 1 we have ||q(z,¢)|| < ~v. Thenif e =
(1 —on—1/2)e for some § > 0,

v+

la@ 2l <

In particular, if
§<~y(1 -1+,
we have ||¢(z,€)|| < 7.

o Can be used to establish nice complexity results;
but « must be reduced VERY slowly.



LONG STEP METHODS

o Main features:
— Decrease ¢ faster than dictated by complex-
ity analysis.
— Require more than one Newton step per (ap-
proximate) minimization.

— Use line search as in unconstrained New-
ton’s method.

— Require much smaller number of (approxi-
mate) minimizations.

*
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e The methodology generalizes to quadratic pro-
gramming and convex programming.



