
6.252 NONLINEAR PROGRAMMING


LECTURE 13: INEQUALITY CONSTRAINTS


LECTURE OUTLINE


• Inequality Constrained Problems 

• Necessary Conditions 

• Sufficiency Conditions 

• Linear Constraints 

Inequality constrained problem 

minimize f(x)


subject to h(x) = 0, g(x) ≤ 0


where f : �n �→ �, h : �n �→ �m, g : �n �→ �r are 
continuously differentiable. Here 

h = (h1, ..., hm), g = (g1, ..., gr ). 
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TREATING INEQUALITIES AS EQUATIONS 

• Consider the set of active inequality constraints 

A(x) = 
 j | gj (x) = 0 
.


• If x ∗ is a local minimum: 
−	 The active inequality constraints at x ∗ can be 

treated as equations 
− The inactive constraints at x ∗ don’t matter 

• Assuming regularity of x ∗ and assigning zero 
Lagrange multipliers to inactive constraints, 
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∗ • Extra property: µj ≥ 0 for all j.

Intuitive reason: Relax jth constraint, gj (x) ≤ uj ,
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BASIC RESULTS


Kuhn-Tucker Necessary Conditions: Let x ∗ be a 
local minimum and a regular point. Then there ex-
ist unique Lagrange mult. vectors λ∗ = (λ∗ 

m),1, . . . , λ∗ 
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If f , h, and g are twice cont. differentiable,
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 ∗ ∗ ∗ y | ∇h(x )′ y = 0, ∇gj (x )′ y = 0, j  ∈ A(x ) .
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• Similar sufficiency conditions and sensitivity re-
sults. They require strict complementarity, i.e., 

∗ 
j > 0, ∀ j ∈ A(x ∗ ).
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PROOF OF KUHN-TUCKER CONDITIONS


Use equality-constraints result to obtain all the 
∗conditions except for µj ≥ 0 for j ∈ A(x ∗). Intro-

duce the penalty functions 

+ gj (x) = max 0, gj (x) , j = 1, . . . , r, 

and for k = 1, 2, . . ., let xk minimize 
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over a closed sphere of x such that f (x ∗) ≤ f(x). 
Using the same argument as for equality con-
straints, 

∗ λi = lim khi(x k), i = 1, . . . , m, 
k→∞ 

∗ µj = lim kgj 
+(x k), j = 1, . . . , r. 

k→∞ 

∗Since gj 
+(xk) ≥ 0, we obtain µj ≥ 0 for all j. 
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LINEAR CONSTRAINTS


•	 Consider the problem mina′ 
j 
x≤bj , j=1,...,r f(x). 

• Remarkable property: No need for regularity. 

• Proposition: If x ∗ is a local minimum, there exist 
∗ ∗ ∗ µ1, . . . , µr with µj ≥ 0, j = 1, . . . , r, such that 

r 

∗ ∗ ∗ ∗ ∇f (x ) +  µj aj = 0, µj = 0, ∀ j /∈ A(x ). 

j=1 

• Proof uses Farkas Lemma: Consider the cones 
C and C⊥ 
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C⊥ = {y | aj'y ≤ 0, j=1,...,r} 
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x ∈ C iff x ′ y ≤ 0, ∀ y ∈ C⊥ .




PROOF OF FARKAS LEMMA

x ∈ C iff x ′ y ≤ 0, ∀ y ∈ C⊥ .


C⊥ = {y | aj'y ≤ 0, j=1,...,r} 

a1 

Proof: First show that C is closed (nontrivial). Then, 
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x - x ̂ 
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Σ µjaj, µj ≥ 0 } 

let x be such that x′y ≤ 0, ∀ y ∈ C⊥, and consider 
its projection x̂ on C. We have 

x) =  ‖x − ˆx ′(x − ˆ x‖2 , (∗) 

(x − x̂)′ aj ≤ 0, ∀ j. 

Hence, (x − x̂) ∈ C⊥, and using the hypothesis, 

x ′(x − x̂) ≤ 0. (∗∗) 

From (∗) and (∗∗), we obtain x = x̂, so x ∈ C. 
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PROOF OF LAGRANGE MULTIPLIER RESULT
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Cone generated by aj, j ∈ A(x*) 

− ∇f(x*) 
x * 

Constraint set 

C = {x | x = 

{x | aj'x ≤ bj, j = 1,...,r} 

∗The local min x of the original problem is also a local min 

for the problem mina′ 
j 
x≤bj , j∈A(x ∗ ) f(x). Hence 

∗ ∗ ∗ ∇f (x )′(x − x ) ≥ 0, ∀ x with aj 
′ x ≤ bj , j  ∈ A(x ). 

Since a constraint a′ 
j x ≤ bj , j ∈ A(x ∗) can also be ex-

pressed as a′ 
j (x − x ∗) ≤ 0, we have 

∗ ∗ ∇f(x )′ y ≥ 0, ∀ y with aj 
′ y ≤ 0, j  ∈ A(x ). 

From Farkas’ lemma, −∇f (x ∗) has the form 

∗ ∗ µj aj , for some µj ≥ 0, j ∈ A(x ∗). 

j∈A(x ∗ ) 

∗Let µj = 0  for j /∈ A(x ∗). 
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CONVEX COST AND LINEAR CONSTRAINTS


Let f : �n �→ �  be convex and cont. differentiable, 
and let J be a subset of the index set {1, . . . , r}. 
Then x ∗ is a global minimum for the problem 

minimize f(x) 

subject to aj 
′ x ≤ bj , j = 1, . . . , r, 

if and only if x ∗ is feasible and there exist scalars
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• Proof is immediate if J = {1, . . . , r}. 

• Example: Simplex Constraint. 


