
6.252 NONLINEAR PROGRAMMING


LECTURE 12: SUFFICIENCY CONDITIONS


LECTURE OUTLINE


• Equality Constrained Problems/Sufficiency Con-
ditions 

• Convexification Using Augmented Lagrangians 

• Proof of the Sufficiency Conditions 

• Sensitivity 

Equality constrained problem 

minimize f (x)


subject to hi(x) = 0, i = 1, . . . , m.


where f : �n �→ �, hi : �n �→ �, are continuously 
differentiable. To obtain sufficiency conditions, as-
sume that f and hi are twice continuously differen-
tiable. 



( ) 

SUFFICIENCY CONDITIONS 

Second Order Sufficiency Conditions: Let x ∗ ∈ �n 

and λ∗ ∈ �m satisfy 

∗ ∗ ∗ ∗ ∇xL(x , λ  ) = 0, ∇λL(x , λ  ) = 0, 

y ′∇2 
xxL(x ∗ , λ  ∗ )y >  0, ∀ y �= 0  with ∇h(x ∗ )′ y = 0. 

Then x ∗ is a strict local minimum. 

Example: Minimize −(x1x2 + x2x3 + x1x3) subject to 
∗ ∗ x1 + x2 + x3 = 3. We have that x ∗ = x2 = x3 = 1  and1 

λ∗ = 2  satisfy the 1st order conditions. Also 

0 −1 −1 
∗ ∗ ∇2 

xxL(x , λ  ) = 	 −1 0 −1 . 

−1 −1 0 

We have for all y �= 0  with ∇h(x ∗)′y = 0  or y1 + y2 + 

y3 = 0, 

∗ ∗ y ′∇2 
xxL(x , λ  )y = −y1(y2 + y3) − y2(y1 + y3) − y3(y1 + y2) 

2 2 2 = y1 + y2 + y3 > 0. 

Hence, x ∗ is a strict local minimum. 



A BASIC LEMMA


Lemma: Let P and Q be two symmetric matrices. 
Assume that Q ≥ 0 and P >  0 on the nullspace of 
Q, i.e., x′Px  > 0 for all x �= 0  with x′Qx = 0. Then 
there exists a scalar c such that 

P + cQ : positive definite, ∀ c >  c.


Proof: Assume the contrary. Then for every k, 
there exists a vector xk with ‖xk‖ = 1  such that 

k′ 
Pxk + kxk′ 

Qxk ≤ 0.
x


Consider a subsequence {xk}k∈K converging to 
some x with ‖x‖ = 1. Taking the limit superior, 

x ′P ̄x + lim sup (kxk′ 
Qxk) ≤ 0. (*)


k→∞, k∈K


We have xk′
Qxk ≥ 0 (since Q ≥ 0), so {xk′

Qxk}k∈K → 
0. Therefore, x′Qx = 0  and using the hypothesis, 
x′Px >  0. This contradicts (*). 



PROOF OF SUFFICIENCY CONDITIONS 

Consider the augmented Lagrangian function 
c 

Lc(x, λ) =  f(x) +  λ′h(x) +  ‖h(x)‖2 , 
2 

where c is a scalar. We have 

˜∇xLc(x, λ) =  ∇xL(x, λ), 

xxLc(x, λ) =  ∇2 ˜∇2 
xxL(x, λ) +  c∇h(x)∇h(x)′ 

where λ̃ = λ + ch(x). If (x ∗, λ∗) satisfy the suff. con-
ditions, we have using the lemma, 

∗ , λ 
∗ ) = 0, ∇2 
xxLc(x ∗ , λ 
∗ ) > 0,
∇xLc(x


for suff. large c. Hence for some γ >  0, � >  0,


∗ ) + 

γ


2

‖x − x
∗ ) ≥ Lc(x ∗ , λ 
 ∗ ∗ ‖2 , if ‖x − x ‖ < �.Lc(x, λ


Since Lc(x, λ∗) =  f (x) when h(x) = 0,


∗ ) + 

γ


2

‖x − x
∗ ∗ ‖2 , if h(x) = 0, ‖x − x ‖ < �.f (x) ≥ f (x




∑ 

SENSITIVITY - GRAPHICAL DERIVATION


∇f(x *) 

x * + ∆x 

x * 

∆x 

a a'x = b + ∆b 

a'x = b 

Sensitivity theorem for the problem mina� x=b f(x). If b is 
∗ changed to b+∆b, the minimum x will change to x ∗ +∆x. 
∗Since b + ∆b = a′(x ∗ + ∆x) =  a′x + a′∆x = b + a′∆x, we 

have a′∆x = ∆b. Using the condition ∇f(x ∗) =  −λ∗ a, 

∗ ∗ ∗ ∆cost = f (x + ∆x) − f (x ) =  ∇f(x )′∆x + o(‖∆x‖) 
∗ = −λ a ′∆x + o(‖∆x‖) 

Thus ∆cost = −λ∗∆b + o(‖∆x‖), so up to first order 

∆cost∗ λ = − . 
∆b 

For multiple constraints a′ 
ix = bi, i = 1, . . . , n, we have 

m 

∗ ∆cost = − λi ∆bi + o(‖∆x‖). 
i=1 
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SENSITIVITY THEOREM


Sensitivity Theorem: Consider the family of prob-
lems 

min f (x) (*) 
h(x)=u


parameterized by u ∈ �m. Assume that for u = 0, 
this problem has a local minimum x ∗ , which is reg-
ular and together with its unique Lagrange multi-
plier λ∗ satisfies the sufficiency conditions. 

Then there exists an open sphere S centered at 
u = 0  such that for every u ∈ S, there is an x(u) and 
a λ(u), which are a local minimum-Lagrange mul-
tiplier pair of problem (*). Furthermore, x(·) and 
λ(·) are continuously differentiable within S and we 
have x(0) = x ∗ , λ(0) = λ∗. In addition, 

∇p(u) =  −λ(u), ∀ u ∈ S


where p(u) is the primal function 

p(u) =  f
 x(u)
 .




( ) 
( ) 

EXAMPLE


p(u) 

-1 0 
uslope ∇p(0) = - λ* = -1 

Illustration of the primal function p(u) =  f x(u) 

for the two-dimensional problem 

2 2minimize f (x) =  1 x1 − x2 − x22 

subject to h(x) =  x2 = 0. 

Here, 

p(u) =  min f(x) =  − 1 2 u 2 − u 
h(x)=u 

and λ∗ = −∇p(0) = 1, consistently with the sensitivity 

theorem. 

• Need for regularity of x ∗: Change constraint to√ 
h(x) =  x2 

2 = 0. Then p(u) =  −u/2 − u for u ≥ 0 and 
is undefined for u <  0. 
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PROOF OUTLINE OF SENSITIVITY THEOREM


Apply implicit function theorem to the system 
∇f(x) +  ∇h(x)λ = 0, h(x) =  u.


For u = 0  the system has the solution (x ∗, λ∗), and 
the corresponding (n + m) × (n + m) Jacobian 

m


i=1 
λi 
∗∇2hi(x ∗) ∇h(x ∗)
∇2f (x ∗) + 


J =
 ∇h(x ∗)′ 0


is shown nonsingular using the sufficiency con-
ditions. Hence, for all u in some open sphere S 

centered at u = 0, there exist x(u) and λ(u) such 
that x(0) = x ∗ , λ(0) = λ∗ , the functions x(·) and λ(·) 
are continuously differentiable, and 

∇f
 x(u)
 + ∇h x(u)
 λ(u) = 0, h
 x(u)
 = u.


For u close to u = 0, using the sufficiency condi-
tions, x(u) and λ(u) are a local minimum-Lagrange 
multiplier pair for the problem minh(x)=u f (x). 

x(u)
 = u, to
To derive ∇p(u), differentiate h


x(u)
 , and combine with the re-
obtain I = ∇x(u)∇h


x(u)
 + ∇x(u)∇h x(u)
 λ(u) = 0  and
lations ∇x(u)∇f


f
 x(u)
 = ∇x(u)∇f
 x(u)
 .
∇p(u) =  ∇u



