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6.252 NONLINEAR PROGRAMMING


LECTURE 7: ADDITIONAL METHODS


LECTURE OUTLINE


• Least-Squares Problems and Incremental Gra-
dient Methods 

• Conjugate Direction Methods 

• The Conjugate Gradient Method 

• Quasi-Newton Methods 

• Coordinate Descent Methods 

• Recall the least-squares problem: 

minimize f(x) =  1 22 ‖g(x)‖2 = 1 

m


i=1


‖gi(x)‖2


subject to x ∈ �n , 

where g = (g1, . . . , gm), gi : �n → �ri . 
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INCREMENTAL GRADIENT METHODS 

• Steepest descent method 

xk+1 = xk −αk∇f(xk) =  xk −αk


m


i=1


∇gi(xk)gi(xk)


• Incremental gradient method: 

ψi = ψi−1 − αk∇gi(ψi−1)gi(ψi−1), i  = 1, . . . , m  

ψ0 = xk , xk+1 = ψm 

(aix - bi)
2 

x * 

mini
a i 

bi 

Advantage of incrementalism
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VIEW AS GRADIENT METHOD W/ ERRORS


• Can write incremental gradient method as 

xk+1 = xk − αk


m


i=1


∇gi(xk)gi(xk)


+ αk 

m


i=1


∇gi(xk)gi(xk) −∇gi(ψi−1)gi(ψi−1)


• Error term is proportional to stepsize αk 

• Convergence (generically) for a diminishing step-
size (under a Lipschitz condition on ∇gigi) 

• Convergence to a “neighborhood” for a constant 
stepsize 



CONJUGATE DIRECTION METHODS


• Aim to improve convergence rate of steepest 
descent, without incurring the overhead of New-
ton’s method 

• Analyzed for a quadratic model. They require n 
iterations to minimize f(x) = (1/2)x′Qx − b′x with 
Q an n × n positive definite matrix Q >  0. 

• Analysis also applies to nonquadratic problems 
in the neighborhood of a nonsingular local min 

• Directions d1, . . . , dk are Q-conjugate, if di′Qdj = 
0 for all i �= j 

• Generic conjugate direction method: xk+1 = 
xk + αkdk where the dks are Q-conjugate and αk 

is obtained by line minimization 
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d0 = Q -1/2w0 

d1 = Q -1/2w1 

Expanding Subspace Theorem 
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GENERATING Q-CONJUGATE DIRECTIONS 

• Given set of linearly independent vectors ξ0, . . . , ξk, 
we can construct a set of Q-conjugate directions 
d0, . . . , dk s.t. Span(d0, . . . , di) =  Span(ξ0, . . . , ξi) 

• Gram-Schmidt procedure. Start with d0 = ξ0. 
If for some i < k, d0, . . . , di are Q-conjugate and 
the above property holds, take 

di+1 = ξi+1 +

i


m=0


c(i+1)mdm;


choose c(i+1)m so di+1 is Q-conjugate to d0, . . . , di,


Qdj = 0.

i


m=0


c(i+1)mdm
di+1′Qdj = ξi+1′Qdj +


d2= ξ2 + c20d0 + c21d1 

d1= ξ1 + c10d0 
ξ2 

d1 

d0 

ξ1 

0


0

- c10d0 ξ0 = d0 
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CONJUGATE GRADIENT METHOD


• Apply Gram-Schmidt to the vectors ξk = gk = 
∇f(xk), k = 0, 1, . . . , n  − 1 

k−1 

dk = −gk + 
gk′Qdj 

dj 

j=0 
dj ′Qdj 

• Key fact: Direction formula can be simplified. 

Proposition : The directions of the CGM are 
generated by d0 = −g0 , and 

dk = −gk + βkdk−1, k = 1, . . . , n  − 1, 

where βk is given by 

gk′ gk 

or βk =
(gk − gk−1)′gk 

βk = 
gk−1′ gk−1 gk−1′ gk−1 

Furthermore, the method terminates with an opti-
mal solution after at most n steps. 

• Extension to nonquadratic problems. 
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QUASI-NEWTON METHODS


• xk+1 = xk − αkDk∇f(xk), where Dk is an 
inverse Hessian approximation 

• Key idea: Successive iterates xk, xk+1 and gra-
dients ∇f(xk), ∇f(xk+1), yield curvature info 

qk ≈ ∇2f(xk+1)pk, 

pk = xk+1 − xk, qk = ∇f(xk+1) −∇f(xk). 
]−1 ∇2f(xn) ≈ q0 · · ·  qn−1 p0 · · ·  pn−1 

• Most popular Quasi-Newton method is a clever 
way to implement this idea 

Dk+1 = Dk + 
pkpk′ 

− 
Dkqkqk′Dk 

+ ξkτ kvkvk′ , 
pk′ qk qk′Dkqk 

vk = 
pk 

− 
Dkqk 

, τk = qk′Dkqk , 0 ≤ ξk ≤ 1 
pk′ qk τ k 

and D0 > 0 is arbitrary, αk by line minimization, 
and Dn = Q−1 for a  quadratic. 
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NONDERIVATIVE METHODS


• Finite difference implementations 

• Forward and central difference formulas 

∂f(xk) ≈ 
1 ( 

f(xk + hei) − f(xk)
∂xi h 

∂f(xk) ≈ 
1 ( 

f(xk + hei) − f(xk − hei)
∂xi 2h 

• Use central difference for more accuracy near 
convergence 

xk 

xk+1 
xk+2 

• Coordinate descent. 
Applies also to the case 
where there are bound 
constraints on the vari-
ables. 

• Direct search methods. Nelder-Mead method. 



PROOF OF CONJUGATE GRADIENT RESULT


• Use induction to show that all gradients gk gen-
erated up to termination are linearly independent. 
True for k = 1. Suppose no termination after k 
steps, and g0, . . . , gk−1 are linearly independent. 
Then, Span(d0, . . . , dk−1) =  Span(g0, . . . , gk−1) 
and there are two possibilities: 

− gk = 0, and the method terminates. 

−	 gk �= 0, in which case from the expanding 
manifold property 

gk is orthogonal to d0, . . . , dk−1 

gk is orthogonal to g0, . . . , gk−1 

so gk is linearly independent of g0, . . . , gk−1, 
completing the induction. 

• Since at most n lin. independent gradients can 
be generated, gk = 0  for some k ≤ n. 

• Algebra to verify the direction formula. 


