6.252 NONLINEAR PROGRAMMING
LECTURE 6

NEWTON AND GAUSS-NEWTON METHODS

LECTURE OUTLINE

Newton’s Method

Convergence Rate of the Pure Form
Global Convergence

Variants of Newton’s Method

Least Squares Problems

The Gauss-Newton Method



NEWTON'S METHOD

rhtl = gk — ok (VQf(xk))_1Vf(xk)

assuming that the Newton direction is defined and
IS a direction of descent

e Pure form of Newton’s method (stepsize = 1)
PR+l = ok — (V2 f(2h)) TV f(ab)

— Very fast when it converges (how fast?)

— May not converge (or worse, it may not be

defined) when started far from a nonsingular
local min

— Issue: How to modify the method so that

It converges globally, while maintaining the
fast convergence rate



CONVERGENCE RATE OF PURE FORM

e Consider solution of nonlinear system g(z) =0
where g : & — R7, with method

okl — ok _ (Vg(xk)/)_lg(xk)

— Ifg(x) = Vf(x), we get pure form of Newton

e Quick derivation: Suppose x% — x* with g(z*) =
0 and Vg(x*) is invertible. By Taylor

0 = g(z*) = g(xk)+Vg(a*) (z*—ak)+o(||lzk—z*]).
Multiply with (Vg(az’f)’)_l:
wk — @t — (Vg(ak)) " g(ah) = o([lzF — a|),

SO
oh 1 — a7 = of||ak — a+])),

Implying superlinear convergence and capture.



CONVERGENCE BEHAVIOR OF PURE FORM

k xK g(xK)

0 | -1.00000 |- 0.63212
1 | o0.71828 | 1.05091
2 | 020587 | 0.22859
3 | 0.01981 | 0.02000
4 | 0.00019 | 0.00019
5 | 0.00000 | 0.00000

<Y




MODIFICATIONS FOR GLOBAL CONVERGENCE

e Use a stepsize

e Modify the Newton direction when:
— Hessian is not positive definite

— When Hessian is nearly singular (needed to
Improve performance)

e Use

At = —(V2f (ak) + AR) TV f(ah),
whenever the Newton direction does not exist or

IS not a descent direction. Here A is a diagonal
matrix such that

V2 f(ak) + Ak >0

— Modified Cholesky factorization
— Trust region methods



LEAST-SQUARES PROBLEMS

minimize f(z) = i||g(2)|]? = L Z gi(x)||?
subject to x € k™,

where g = (91,...,9m), gi : R — R,

ee Many applications:
— Model Construction — Curve Fitting
— Neural Networks
— Pattern Classification




THE GAUSS-NEWTON METHOD

e |dea: Linearize around the current point z*
g(x,ak) = g(a%) + Vg(a*) (z — )

and minimize the norm of the linearized function
g.
rF+1 = arg min 1| g(x, z*)||?
rERM

= ak—(Vg(zk)Vg(z*)) " Vg(ak)g(z)

e The direction
~(Vg(a*)Vg(ak)) ™ Vg(zk)g(at)
IS a descent direction since
Vg(zk)g(ak) = V((1/2)llg(x)]?)

Vg(aF)Vg(zk) >0



MODIFICATIONS OF THE GAUSS-NEWTON

e Similar to those for Newton’s method:
w1 = gk —ak (Vg(ah)Vg(ah)+AF) " Vg(ak)g(ah)

where o is a stepsize and Ak is a diagonal matrix
such that

Vg(zk)Vg(zk) + Ak >0
e Incremental version of the Gauss-Newton method:

— Operate in cycles
— Start a cycle with ¢ (an estimate of x)
— Update v using a single component of ¢

TERMT 4

)
i = arg min » [|g;(z,¢;1)|2, i=1,...,m,
71=1

where g; are the linearized functions

gi(x,j—1) = gj(j—1)+Vg;(hj—1) (x—1j-1)



MODEL CONSTRUCTION

e Given set of m input-output data pairs (y;, 2; ),
1 =1,...,m, from the physical system

e Hypothesize aninput/outputrelation z = h(z,y),
where x Is a vector of unknown parameters, and
h is known

e Find z that matches best the data in the sense
that it minimizes the sum of squared errors

LY llzi = Rz, yi) |2
1=1
e Example of a linear model: Fit the data pairs by
a cubic polynomial approximation. Take

h(ZC, y) — $3y3 + $2y2 + 1Y + Zo,

where z = (xo, z1, x2, x3) IS the vector of unknown
coefficients of the cubic polynomial.



NEURAL NETS

e Nonlinear model construction with multilayer
perceptrons

e 1 Of the vector of weights

e Universal approximation property



PATTERN CLASSIFICATION

e Objects are presented to us, and we wish to
classify them in one of s categories 1, ..., s, based
on a vector y of their features.

e Classical maximum posterior probability ap-
proach: Assume we know

p(jly) = P(object w/ feature vector y is of category j)

Assign object with feature vector y to category

i*(y) = argjgaxsp(j\y)-

e If p(j|ly) are unknown, we can estimate them
using functions h;(x;, y) parameterized by vectors
x;. Obtain x; by minimizing

1=1

N

where

i { 1 if y; is of category j,

J 0 otherwise.



