
6.252 NONLINEAR PROGRAMMING


LECTURE 5: RATE OF CONVERGENCE


LECTURE OUTLINE


• Approaches for Rate of Convergence Analysis 

• The Local Analysis Method 

• Quadratic Model Analysis 

• The Role of the Condition Number 

• Scaling 

• Diagonal Scaling 

• Extension to Nonquadratic Problems 

• Singular and Difficult Problems 



APPROACHES FOR RATE OF


CONVERGENCE ANALYSIS


• Computational complexity approach 

• Informational complexity approach 

• Local analysis 

• Why we will focus on the local analysis method 



THE LOCAL ANALYSIS APPROACH


• Restrict attention to sequences xk converging 
to a local min x ∗ 

• Measure progress in terms of an error function 
e(x) with e(x ∗) = 0, such as 

e(x) =  ‖x − x ∗‖, e(x) =  f(x) − f(x ∗) 

• Compare the tail of the sequence e(xk) with the 
tail of standard sequences 

• Geometric or linear convergence [if e(xk) ≤ qβk 

for some q >  0 and β ∈ [0, 1), and for all k]. Holds 
if 

lim sup 
e(xk+1) 

< β  
k→∞ e(xk) 

k • Superlinear convergence [if e(xk) ≤ q · βp for 
some q >  0, p >  1 and β ∈ [0, 1), and for all k]. 

• Sublinear convergence 
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QUADRATIC MODEL ANALYSIS 

• Focus on the quadratic function f(x) = (1/2)x′Qx, 
with Q >  0. 

• Analysis also applies to nonquadratic problems 
in the neighborhood of a nonsingular local min 

• Consider steepest descent 

xk+1 = xk − αk∇f(xk) = (I − αkQ)xk 

‖xk+1‖2 = xk′(I − αkQ)2xk 

≤ max eig. (I − αkQ)2 ‖xk‖2 

The eigenvalues of (I − αkQ)2 are equal to (1 − 
αkλi)2, where λi are the eigenvalues of Q, so 

max eig of (I−αkQ)2 = max (1−αkm)2 , (1−αkM)2 

where m, M are the smallest and largest eigen-
values of Q. Thus 

‖xk+1‖ { } 
≤ max |1 − αkm|, |1 − αkM |‖xk‖ 



OPTIMAL CONVERGENCE RATE


• The value of αk that minimizes the bound is 
α∗ = 2/(M + m), in which case 

‖xk+1‖ M − m ≤ ‖xk‖ M + m 
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Stepsizes that 
Guarantee Convergence 

• Conv. rate for minimization stepsize (see text) 

( )2
f(xk+1) M − m ≤ 
f(xk) M + m 

• The ratio M/m is called the condition number 
of Q, and problems with M/m: large are called 
ill-conditioned . 



SCALING AND STEEPEST DESCENT


•	 View the more general method 

xk+1 = xk − αkDk∇f(xk) 

as a scaled version of steepest descent. 

• Consider a change of variables x = Sy with 
S = (Dk)1/2 . In the space of y, the problem is 

minimize h(y) ≡ f(Sy) 
subject to y ∈ �n 

• Apply steepest descent to this problem, multiply 
with S, and pass back to the space of x, using 
∇h(yk) =  S∇f(xk), 

yk+1 = yk − αk∇h(yk) 

Syk+1 = Syk − αkS∇h(yk) 

xk+1 = xk − αkDk∇f(xk) 



DIAGONAL SCALING

• Apply the results for steepest descent to the
scaled iteration yk+1 = yk − αk∇h(yk):

‖yk+1‖
‖yk‖ ≤ max

{
|1 − αkmk|, |1 − αkMk|

}

f(xk+1)
f(xk)

=
h(yk+1)
h(yk)

≤
(

Mk − mk

Mk + mk

)2

where mk and Mk are the smallest and largest
eigenvalues of the Hessian of h, which is

∇2h(y) = S∇2f(x)S = (Dk)1/2Q(Dk)1/2

• It is desirable to choose Dk as close as possible
to Q−1. Also if Dk is so chosen, the stepsize α = 1
is near the optimal 2/(Mk + mk).

• Using as Dk a diagonal approximation to Q−1

is common and often very effective. Corrects for
poor choice of units expressing the variables.



NONQUADRATIC PROBLEMS

• Rate of convergence to a nonsingular local min-
imum of a nonquadratic function is very similar to
the quadratic case (linear convergence is typical).

• If Dk →
(
∇2f(x∗)

)−1
, we asymptotically obtain

optimal scaling and superlinear convergence

• More generally, if the direction dk = −Dk∇f(xk)
approaches asymptotically the Newton direction,
i.e.,

lim
k→∞

‖dk +
(
∇2f(x∗)

)−1∇f(xk)‖
‖∇f(xk)‖ = 0

and the Armijo rule is used with initial stepsize
equal to one, the rate of convergence is superlin-
ear.

• Convergence rate to a singular local min is typ-
ically sublinear (in effect, condition number = ∞)


