6.252 NONLINEAR PROGRAMMING
LECTURE 5: RATE OF CONVERGENCE
LECTURE OUTLINE

Approaches for Rate of Convergence Analysis
The Local Analysis Method

Quadratic Model Analysis

The Role of the Condition Number

Scaling

Diagonal Scaling

Extension to Nonquadratic Problems

Singular and Difficult Problems



APPROACHES FOR RATE OF

CONVERGENCE ANALYSIS

Computational complexity approach
Informational complexity approach
Local analysis

Why we will focus on the local analysis method



THE LOCAL ANALYSIS APPROACH

e Restrict attention to sequences x* converging
to a local min x*

e Measure progress in terms of an error function
e(x) with e(z*) = 0, such as

e(z) = [lz —z*[|,  e(x) = f(z) = f(z*)

e Compare the tail of the sequence e(z*) with the
tail of standard sequences

e Geometric or linear convergence [if e(x%) < g%
for some ¢ > 0and § € [0,1), and for all k]. Holds
if
. e(zk+1)
hlzrisolip (25

<p

e Superlinear convergence [if e(z*) < ¢ - 8" for
some ¢ > 0,p>1and g € [0,1), and for all £].

e Sublinear convergence



QUADRATIC MODEL ANALYSIS

e Focus onthe quadratic function f(x) = (1/2)2’Qx=,
with Q > 0.

e Analysis also applies to nonguadratic problems
In the neighborhood of a nonsingular local min

e Consider steepest descent
xhtl =gk — bV f(zk) = (I — aFQ)xk
|k 1|2 = 2k (I — ak Q)22
< (max eig. (I — a*Q)?)||a*|?
The eigenvalues of (I — a*Q)? are equal to (1 —
ak)\;)?2, where \; are the eigenvalues of @, so

max eig of (I—a*@Q))2 = max{(l—akm)Z, (l—cukM)Q}

where m, M are the smallest and largest eigen-
values of (). Thus
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o] < max{|l — a*m], |1 — akF M|}
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OPTIMAL CONVERGENCE RATE

e The value of o* that minimizes the bound is
a* = 2/(M + m), in which case

|k + M —m
|xk|| — M +m

A max {|1 - om|, |1 - aM[}
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Stepsizes that
Guaran tee Conver gence

e Conv. rate for minimization stepsize (see text)

e The ratio M /m is called the condition number
of @), and problems with M /m: large are called
ll-conditioned.



SCALING AND STEEPEST DESCENT

e View the more general method
xrhtl = gk — ok DEV f(2F)

as a scaled version of steepest descent.

e Consider a change of variables x = Sy with
S = (DFk)1/2, In the space of y, the problem is

minimize h(y) = f(Sy)
subjectto y € Rr»

e Apply steepest descent to this problem, multiply
with S, and pass back to the space of z, using
Vh(yF) = SV f(zF),

yhtl =yk — aFVh(y*)

Syk+l = Syk — akSVh(y*)

rktl = gk — ok DEV f(zF)



DIAGONAL SCALING

e Apply the results for steepest descent to the
scaled iteration yk+1 = yk — a*Vh(y*):

Jyk+1]]
|y ||

FaH+) Ry ME -k
@ h(h) S(Mkmk)

where mF and M¥* are the smallest and largest
eigenvalues of the Hessian of h, which is

< max{|1l — akmk|, |1 — akMk|}

V2h(y) = SV2f(2)S = (Dk)1/2Q(Dk)1/2

e Itis desirable to choose D* as close as possible
to 1. Alsoif D*issochosen, the stepsizea = 1
IS near the optimal 2/(M* + mk).

e Using as D* a diagonal approximation to ()1
IS common and often very effective. Corrects for
poor choice of units expressing the variables.



NONQUADRATIC PROBLEMS

e Rate of convergence to a nonsingular local min-
Imum of a nonquadratic function is very similar to
the quadratic case (linear convergence is typical).

o If DF — (VQf(a:*))_l, we asymptotically obtain
optimal scaling and superlinear convergence
e More generally, ifthe direction d* = —DkV f(x*)

approaches asymptotically the Newton direction,
l.e.,

L (V) V)
o [V ()]

=0

and the Armijo rule is used with initial stepsize
equal to one, the rate of convergence is superlin-
ear.

e Convergence rate to a singular local min is typ-
iIcally sublinear (in effect, condition number = o)



