
6.252 NONLINEAR PROGRAMMING


LECTURE 4


CONVERGENCE ANALYSIS OF GRADIENT METHODS


LECTURE OUTLINE


• Gradient Methods - Choice of Stepsize 

• Gradient Methods - Convergence Issues 



CHOICES OF STEPSIZE I


•	 Minimization Rule: αk is such that 

f(xk + αkdk) =  min f(xk + αdk). 
α≥0 

• Limited Minimization Rule: Min over α ∈ [0, s] 

• Armijo rule: 

σα∇f(xk)'dk 

α∇f(xk)'dk 

0 α 

Set of Acceptable 
Stepsizes 

× 
s 

× 
βs 

Unsuccessful 
Trials 

β2sStepsize αk = 

f(xk + αdk) - f(xk) 

× 

Stepsize 

Start with s and continue with βs, β2s, ..., until βms falls 

within the set of α with 

f(x k) − f (x k + αdk) ≥ −σα∇f (x k)′dk . 



∑ 

CHOICES OF STEPSIZE II 

•	 Constant stepsize: αk is such that 

αk = s : a constant 

• Diminishing stepsize: 

αk → 0 

but satisfies the infinite travel condition 

∞ 

αk = ∞

k=0 



GRADIENT METHODS WITH ERRORS


xk+1 = xk − αk(∇f(xk) +  ek) 

where ek is an uncontrollable error vector 

• Several special cases: 

−	 ek small relative to the gradient; i.e., for all 
k, ‖ek‖ < ‖∇f(xk)‖ 

Illustration of the descent 

property of the direction 
∇f(xk) 

ek 

gk 
gk = ∇f (xk) +  ek . 

− {ek} is bounded, i.e., for all k, ‖ek‖ ≤  δ, 
where δ is some scalar. 

− {ek} is proportional to the stepsize, i.e., for 
all k, ‖ek‖ ≤  qαk , where q is some scalar. 

− {ek} are independent zero mean random vec-
tors 



CONVERGENCE ISSUES


• Only convergence to stationary points can be 
guaranteed 

• Even convergence to a single limit may be hard 
to guarantee (capture theorem) 

• Danger of nonconvergence if directions dk tend 
to be orthogonal to ∇f(xk) 

• Gradient related condition: 

For any subsequence {xk}k∈K that converges to 
a nonstationary point, the corresponding subse-
quence {dk}k∈K is bounded and satisfies 

lim sup ∇f(xk)′dk < 0. 
k→∞, k∈K


• Satisfied if dk = −Dk∇f(xk) and the eigenval-
ues of Dk are bounded above and bounded away 
from zero 



CONVERGENCE RESULTS


CONSTANT AND DIMINISHING STEPSIZES


Let {xk} be a sequence generated by a gradient 
method xk+1 = xk + αkdk, where {dk} is gradient 
related. Assume that for some constant L >  0, 
we have 

‖∇f(x) −∇f(y)‖ ≤  L‖x − y‖, ∀ x, y ∈ �n , 

Assume that either 

(1) there exists a scalar ε such that for all k 

0 < ε  ≤ αk ≤ 
(2 − ε)|∇f(xk)′dk|

L‖dk‖2 

or 

(2) αk → 0 and 
∑∞ 

k=0 α
k = ∞. 

Then either f(xk) → −∞ or else {f(xk)} con-
verges to a finite value and ∇f(xk) → 0. 



MAIN PROOF IDEA


0 α 

α∇f(xk)'dk  + (1/2)α2L||dk||2 

× 

α∇f(xk)'dk 

α = |∇f(x k)'d
k
| 

L||d
k
||

|2 

f(xk + αdk) - f(xk) 

The idea of the convergence proof for a constant stepsize. 

Given xk and the descent direction dk , the cost differ-

ence f (xk + αdk) − f (xk) is majorized by α∇f (xk)′dk + 

2 α
2L‖dk‖2 (based on the Lipschitz assumption; see next 

slide). Minimization of this function over α yields the step- 

size 
|∇f (xk)′dk|

α = 
L‖dk‖2 

This stepsize reduces the cost function f as well. 

1 
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DESCENT LEMMA


Let α be a scalar and let g(α) =  f(x + αy). Have 

∫ 1 dg
f(x + y) − f(x) =  g(1) − g(0) = 

dα 
(α) dα 

0 ∫ 1 

= y′∇f(x + αy) dα 
0 ∫ 1 

≤ y′∇f(x) dα 
0∣∫ 1 ( ) ∣∣ 

+ ∣∣ y′ ∇f(x + αy) −∇f(x) dα ∣∣ 
0 ∫ 1 

≤ y′∇f(x) dα 
0 ∫ 1 

+ ‖y‖ · ‖∇f(x + αy) −∇f(x)‖dα 
0 ∫ 1 

≤ y′∇f(x) +  ‖y‖ Lα‖y‖ dα 
0 

= y′∇f(x) +  
L 

2 
‖y‖2. 



CONVERGENCE RESULT – ARMIJO RULE

Let {xk} be generated by xk+1 = xk+αkdk, where
{dk} is gradient related and αk is chosen by the
Armijo rule. Then every limit point of {xk} is sta-
tionary.

Proof Outline: Assume x is a nonstationary limit
point. Then f(xk) → f(x), so αk∇f(xk)′dk → 0.

• If {xk}K → x, lim supk→∞, k∈K ∇f(xk)′dk < 0,
by gradient relatedness, so that {αk}K → 0.

• By the Armijo rule, for large k ∈ K

f(xk)−f
(
xk +(αk/β)dk

)
< −σ(αk/β)∇f(xk)′dk.

Defining pk = dk

‖dk‖ and αk = αk‖dk‖
β , we have

f(xk) − f(xk + αkpk)
αk

< −σ∇f(xk)′pk.

Use the Mean Value Theorem and let k → ∞.
We get −∇f(x)′p ≤ −σ∇f(x)′p, where p is a limit
point of pk – a contradiction since ∇f(x)′p < 0.


