6.252 NONLINEAR PROGRAMMING
LECTURE 3: GRADIENT METHODS
LECTURE OUTLINE

Quadratic Unconstrained Problems
Existence of Optimal Solutions
Iterative Computational Methods
Gradient Methods - Motivation
Principal Gradient Methods

Gradient Methods - Choices of Direction



QUADRATIC UNCONSTRAINED PROBLEMS

: 1, /
min f(x) = s2’Qzx — b'x
xeRn” f< ) 2 ’

where ) Is n x n symmetric, and b € Rn.

e Necessary conditions:
Vi(x*)=Qx*—b=0,
V2f(z*) =@ > 0: positive semidefinite.

e ) >0 = f:convex, nec. conditions are also
sufficient, and local minima are also global

e Conclusions:
— @ :not >0 = f hasnolocal minima
— If Q > 0 (and hence invertible), z* = Q—1b
IS the unigue global minimum.

— If @ > 0 but not invertible, either no solution
or co humber of solutions



a>0, >0
(1/a, 0) is the unique
global minimum
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{(1/a, €)| E: real} is the set of There is no global minimum
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Illustration of the isocost surfaces of the quadratic cost
function f : R? — R given by

a=0
There is no global minimum
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f(,y) = 3 (az® + By?) —a

for various values of a and 3.



EXISTENCE OF OPTIMAL SOLUTIONSe

Consider

min f(x)

reX

Two possibilities:

e The set {f(z) | z € X} is unbounded below,
and there is no optimal solution

e The set {f(z)|x € X} is bounded below

— A global minimum exists if f is continuous
and X Is compact (Weierstrass theorem)

— A global minimum exists if X is closed, and
f is coercive, thatis, f(x) — cowhen ||z|| —
O



GRADIENT METHODS - MOTIVATIONe

VA(X)

If Vf(z) # 0, there is an

interval (0,9) of stepsizes
such that

_ =X- aVi(x)
) = o1 Xo =X aV
N\

f(x)= co<cq

|

f(x)= c3<cy

f(z—aVf(2) < f(2)

fe—— X- OVI(X)

for all a € (0, 9).

If d makes an angle with
V f(x) that is greater than
90 degrees,

f(x) = cq

RN b Vf(z)'d <0,
f(x)= cg3<cy
there is an interval (0, 6)
of stepsizes such that f(x+
ad) < f(x) for all a €
(0,6).



PRINCIPAL GRADIENT METHODSe-

xktl = ok 4+ akdk, k=0,1,...
where, if V f(x*) # 0, the direction d* satisfies
V f(zk)dk <0,
and o is a positive stepsize. Principal example:
zhtl = ok — bk DRV f(2F),

where DF is a positive definite symmetric matrix

e Simplest method: Steepest descent
xhtl =gk — kV f(xk), E=0,1,...

e Most sophisticated method: Newton’s method

rk+l :xk—ak(VQf(mk))_1Vf(:E’“), k=0,1,...



STEEPEST DESCENT AND NEWTON'S METHODe

©  Slow convergence of steep-

est descent

Fast convergence of New-
ton’s method w/ of = 1.

f) = cq

Quadratic Approximation of f at x0

Given z¥, the method ob-
tains 11 as the minimum
of a quadratic approxima-
tion of f based on a sec-
Quadratic Approximation of f at x! ond order Taylor expansion
around z”.




OTHER CHOICES OF DIRECTION

e Diagonally Scaled Steepest Descent
Dt = Diagonal approximation to (VQf(x’f))_1

e Modified Newton’s Method

Dk = (V2f(0)"t,  k=0,1,...,

e Discretized Newton’s Method
Dk = (H(zF)™', k=0,1,...,

where H(z¥) is a finite-difference based approxi-
mation of V2 f(xF),

e Gauss-Newton method for least squares prob-
lems min,cx- 1||g(z)||%2. Here

DF = (Vg(a:’f)Vg(x’f)’)_l, k=0,1,...



