
6.252 NONLINEAR PROGRAMMING


LECTURE 2


UNCONSTRAINED OPTIMIZATION -


OPTIMALITY CONDITIONS


LECTURE OUTLINE


• Unconstrained Optimization 

• Local Minima 

• Necessary Conditions for Local Minima 

• Sufficient Conditions for Local Minima 

• The Role of Convexity 



LOCAL AND GLOBAL MINIMA


f(x) 

x 

Strict Local 
Minimum 

Local Minima	 Strict Global 
Minimum 

Unconstrained local and global minima in one dimension.




NECESSARY CONDITIONS FOR A LOCAL MIN


• Zero slope at a local minimum x ∗ 

∇f(x ∗) = 0  

• Nonnegative curvature at a local minimum x ∗ 

∇2f(x ∗) :  Positive Semidefinite 

xx* = 0 

f(x) = |x|3 (convex) 

x 

f(x) = x3 f(x) = - |x|3 

x* = 0x* = 0 x

First and second order necessary optimality conditions for 

functions of one variable. 



PROOFS OF NECESSARY CONDITIONS


• 1st order condition ∇f(x ∗) = 0. Fix d ∈ �n. 
Then (since x ∗ is a local min) 

d′∇f(x ∗) =  lim 
f(x ∗ + αd) − f(x ∗) ≥ 0, 

α↓0 α 

Replace d with −d, to obtain 

d′∇f(x ∗) = 0, ∀ d ∈ �n 

• 2nd order condition ∇2f(x ∗) ≥ 0. 

α2 

f(x ∗+αd)−f(x ∗) =  α∇f(x ∗)′d+
2 

d′∇2f(x ∗)d+o(α2) 

Since ∇f(x ∗) = 0  and x ∗ is local min, there is 
sufficiently small ε >  0 such that for all α ∈ (0, ε), 

0 ≤ 
f(x ∗ + αd) − f(x ∗) 

2 d
′∇2f(x ∗)d + 

o(α2)
= 1 

α2 α2 

Take the limit as α → 0.




( ) 

SUFFICIENT CONDITIONS FOR A LOCAL MIN


• Zero slope 
∇f(x ∗) = 0  

• Positive curvature 

∇2f(x ∗) :  Positive Definite 

• Proof: Let λ >  0 be the smallest eigenvalue of 
∇2f(x ∗). Using a second order Taylor expansion, 
we have for all d 

1 
f(x ∗ + d) − f(x ∗) =  ∇f(x ∗)′d +

2 
d′∇2f(x ∗)d 

+ o(‖d‖2) 

≥ 
λ 

2 
‖d‖2 + o(‖d‖2) 

λ o(‖d‖2) ‖d‖2 .= 
2

+ ‖d‖2 

For ‖d‖ small enough, o(‖d‖2)/‖d‖2 is negligible 
relative to λ/2. 



αx + (1 - α)y, 0 < α < 1 

CONVEXITY 
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Convex Sets Nonconvex Sets 

Convex and nonconvex sets.


αf(x) + (1 - α)f(y) 

x z 

f(z) 

y 

C 

A convex function. 



( ) 

MINIMA AND CONVEXITY


• Local minima are also global under convexity 

αf(x*) + (1 - α)f(x) 

x 

f(αx* + α)x) 

x x* 

f(x) 

(1-

Illustration of why local minima of convex functions are

∗also global. Suppose that f is convex and that x is a 

local minimum of f . Let x be such that f(x) < f(x ∗). By 

convexity, for all α ∈ (0, 1), 

f
 αx
∗ + (1 − α)x
 ≤ αf (x
∗ ) + (1 − α)f (x) < f(x
∗ ).


Thus, f takes values strictly lower than f (x ∗) on the line 
∗ ∗ segment connecting x with x, and x cannot be a local 

minimum which is not global. 



OTHER PROPERTIES OF CONVEX FUNCTIONS


• f is convex if and only if the linear approximation 
at a point x ∗ based on the gradient, that is, 

f(x) ≥ f(x ∗) +  ∇f(x ∗)′(x − x ∗), ∀ x 

f(z) 
f(z) + (z - x)'∇f(x) 

x z 

− Implication: 

∇f(x ∗) = 0  ⇒ x ∗ is a global minimum 

• f is convex if and only if ∇2f(x) is positive 
semidefinite for all x 


