6.252 NONLINEAR PROGRAMMING
LECTURE 2
UNCONSTRAINED OPTIMIZATION -

OPTIMALITY CONDITIONS

LECTURE OUTLINE

Unconstrained Optimization

Local Minima

Necessary Conditions for Local Minima
Sufficient Conditions for Local Minima

The Role of Convexity



LOCAL AND GLOBAL MINIMA

A
f(x)

I\ I\T/: f §

Strict Local Local Minima Strict Global
Minimum Minimum

Unconstrained local and global minima in one dimension.



NECESSARY CONDITIONS FOR A LOCAL MIN

e Zero slope at a local minimum z*
Vf(xx)=0
e Nonnegative curvature at a local minimum x*

V2 f(z*): Positive Semidefinite
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First and second order necessary optimality conditions for

functions of one variable.



PROOFS OF NECESSARY CONDITIONS

e 1st order condition Vf(xz*) = 0. Fix d € Rn.
Then (since z* Is a local min)

&'V f(2*) = lim flar+ad) = f(@7)

a0 8

Replace d with —d, to obtain

dVf(x*)=0, VdeRn
e 2nd order condition V2 f(x*) > 0.

f(x*+ad)—f(z*) = an(x*)’d+%Qd’vzf(a:*)d+0(a2)

Since Vf(z*) = 0 and z* is local min, there is
sufficiently small e > 0 such that for all a € (0, ¢€),

flz* + ad) — f(z*) o(a?)

0 < " = Ld'V2f(z*)d + —

Take the limit as o« — 0.



SUFFICIENT CONDITIONS FOR A LOCAL MIN

e Zero slope
Vf(xx)=0

e Positive curvature

V2 f(z*) : Positive Definite

e Proof: Let A > 0 be the smallest eigenvalue of

V2 f(x*). Using a second order Taylor expansion,
we have for all d

fla 4 d) — f(a%) = V(a*)d+ 5d'V2 f(a*)d
T o(lldll2)
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For ||d|| small enough, o(||d||?)/]|d||? is negligible
relative to \/2.




CONVEXITY

ax+(1-a)y, O<a<l

Convex Sets Nonconvex Sets

Convex and nonconvex sets.
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A convex function.



MINIMA AND CONVEXITY

e Local minima are also global under convexity

%)

af(x) + (1 - 0)f(X)

(ax*+ (1- a)x)

<y

[llustration of why local minima of convex functions are
also global. Suppose that f is convex and that xz* is a
local minimum of f. Let T be such that f(x) < f(x*). By
convexity, for all a € (0, 1),

f(aa:* + (1 - oz)f) <af(z*)+ (1 —a)f(z) < f(z*).

Thus, f takes values strictly lower than f(z*) on the line
segment connecting x* with =, and =™ cannot be a local

minimum which is not global.



OTHER PROPERTIES OF CONVEX FUNCTIONS

e fisconvex ifand only if the linear approximation
at a point z* based on the gradient, that is,

fle) = f(z*) + V(@) (z —z*), Va

— Implication:

Vf(lz*) =0 = x*is a global minimum

e f is convex if and only if V2f(x) is positive
semidefinite for all =



