15.081 Fall 2009 Recitation for Lectures {22} Semidefinite Programming

1 Basics of Eigen Analysis

Eigen Analysis is an important problem that arises in various areas

- System Stability analysis
- Convergence of various linear-iterative algorithms
- Markov-chains rate of convergence to steady state distributions etc.

Eigenvalues of a matrix

Eigen values of a matrix A are the solutions of the equation

$$Det(A - xI) = 0$$

Also each eigen value has a corresponding eigen vector v such that

$$Av = \lambda v$$

For nice matrices, we have n eigen values and n eigen vectors where n = rank(A).

Another property is that A can be written as $A = \sum \lambda_i v_i v_i^T$ where $\{\lambda_i\}$ and $\{v_i\}$ are the eigenvalues and eigenvectors respectively.

Standard problems

Without loss of generality assume $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$. In the recitation the following problems were discussed.

• find X such that λ_1 is minimized.

- find X such that λ_n is maximized.
- find X such that $\lambda_1 \lambda_n$ is minimized.
- find X such that $\kappa=\frac{\lambda_1}{\lambda_n}$ is minimized. κ is called the condition number of a matrix and arises in many applications.

The survey by Boyd and Vandenbergh is a good source for SDP.

MΙ	Т	Oı	pen	Со	urs	e۷	Vare	Э
htt	p:/	//c	cw.	.mit	.ec	ut		

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.