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1 Outline 
Slide 1 

•	 Cutting plane methods 

•	 Branch and bound methods 

2 Cutting plane methods 
Slide 2 

′ min	 c x 
s.t. Ax = b 

x ≥ 0 
x integer, 

LP relaxation 
′ min	 c x 

s.t. Ax = b 
x ≥ 0. 

2.1	 Algorithm 
Slide 3 

•	 Solve the LP relaxation. Let x ∗ be an optimal solution. 

•	 If x ∗ is integer stop; x ∗ is an optimal solution to IP. 

•	 If not, add a linear inequality constraint to LP relaxation that all integer

solutions satisfy, but x ∗ does not; go to Step 1.


2.2	 Example 
Slide 4 

•	 Let x ∗ be an optimal BFS to LP ralxation with at least one fractional

basic variable.


•	 N : set of indices of the nonbasic variables. 

•	 Is this a valid cut? 
xj ≥ 1. 

j∈N 

2.3	 The Gomory cutting 
plane algorithm 

Slide 5 
•	 Let x ∗ be an optimal BFS and B an optimal basis. 

• 
xB + B−1

AN xN = B−1
b. 

•	 aij = B
−1

Aj , ai0 = B
−1

b 
i 
. 

i
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• 
xi + aij xj = ai0. 

j∈N 

• Since xj ≥ 0 for all j, 

xi + ⌊aij ⌋xj ≤ xi + aij xj = ai0. 
j∈N j∈N 

• Since xj integer, 

xi + ⌊aij ⌋xj ≤ ⌊ai0⌋. 
j∈N 

• Valid cut 

2.4 Example 
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min x1 − 2x2 

s.t. −4x1 + 6x2 ≤ 9 
x1 + x2 ≤ 4 
x1, x2 ≥ 0 
x1, x2 integer. 

We transform the problem in standard form 

min x1 − 2x2 

s.t. −4x1 + 6x2 + x3 = 9 
x1 + x2 + x4 = 4 
x1, . . . , x4 ≥ 0 
x1, . . . , x4 integer. 

LP relaxation: x1 = (15/10, 25/10).	 Slide 7 

• 
1 1 25 

x2 + x3 + x4 = . 
10 10 10 

•	 Gomory cut

x2 ≤ 2.


• Add constraints x2 + x5 = 2, x5 ≥ 0 

• New optimal x2 = (3/4, 2). 

• One of the equations in the optimal tableau is 

1 6 3 
x1 − x3 + x5 = . 

4 4 4 

•	 New Gomory cut

x1 − x3 + x5 ≤ 0,


• New optimal solution is x3 = (1, 2). 
Slide 8 
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3 Branch and bound 
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1.	 Branching: Select an active subproblem Fi 

2.	 Pruning: If the subproblem is infeasible, delete it. 

3.	 Bounding: Otherwise, compute a lower bound b(Fi) for the subproblem. 

4.	 Pruning: If b(Fi) ≥ U , the current best upperbound, delete the subproblem. 

5. Partitioning: If b(Fi) < U , either obtain an optimal solution to the subproblem

(stop), or break the corresponding problem into further subproblems, which are

added to the list of active subproblem.


3.1 LP Based 
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•	 Compute the lower bound b(F ) by solving the LP relaxation of the discrete

optimization problem.


•	 From the LP solution x ∗, if there is a component xi 
∗ which is fractional,


we create two subproblems by adding either one of the constraints


∗ ∗ xi ≤ ⌊xi ⌋, or xi ≥ ⌈xi ⌉. 

Note that both constraints are violated by x ∗ . 

•	 If there are more than 2 fractional components, we use selection rules like

maximum infeasibility etc. to determine the inequalities to be added to

the problem


•	 Select the active subproblem using either depth-first or breadth-first search

strategies.


3.2 Example 
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max 12x1 + 8x2 + 7x3 + 6x4 

s.t. 8x1 + 6x2 + 5x3 + 4x4 ≤ 15 

x1, x2, x3, x4 are binary. 
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 Ob jective va lue =22.2 

x1 = 1 ,  x 2 = 0 ,  x 3 = 0 . 6 ,  x 4 = 1

 Ob jective value =22 

x1 = 1 ,  x 2 = 0 .5, x 3 = 0 ,  x 4 = 1

 Ob jective value =22 

x1 = 1 ,  x 2 = 0 ,  x 3 = 1 , x 4 = 0 .5  

x3 = 0 x3 = 1

 Ob jective  va lue =22.2 

x1 = 1 ,  x 2 = 0 ,  x 3 = 0 . 6 ,  x 4 = 1

 Ob jective value =22 

x1 = 1 ,  x 2 = 0 .5, x 3 = 0 ,  x 4 = 1

 Ob jective value =22 

x1 = 1 ,  x 2 = 0 ,  x 3 = 1 ,  x 4 = 0 .5

 Ob jective va lue =2 1 . 6 6  

x1 = 1 ,  x 2 = 0 . 3 3 ,  x  3 = 1 ,  x 4=0

 Ob jective value =22 

x1 = 0 . 75,  x 2 = 0 ,  x 3 = 1 ,  x 4 = 1 

x3 = 0 x3 = 1 

x4 = 1x4 = 0 

LP relaxation	 Slide 12


max 12x1 + 8x2 + 7x3 + 6x4 

s.t. 8x1 + 6x2 + 5x3 + 4x4 ≤ 15


x1 ≤ 1, x2 ≤ 1, x3 ≤ 1, x4 ≤ 1


x1, x2, x3, x4 ≥ 0


LP solution: x1 = 1, x2 = 0, x3 = 0.6, x4 = 1 Profit=22.2 

3.2.1 Branch and bound tree 
Slide 13


3.3	 Pigeonhole Problem Slide 14

Slide 15


•	 There are n +1 pigeons with n holes. We want to place the pigeons in the Slide 16

holes in such a way that no two pigeons go into the same hole.


•	 Let xij = 1 if pigeon i goes into hole j, 0 otherwise. 

Slide 17


•	 Formulation 1: 

xij = 1, i = 1, . . . , n + 1 
j 

xij + xkj ≤ 1, ∀j, i � k= 
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 Ob jective va lue =2 1  

x1 = 0 , x 2 = 1 , x 3 = 1 , x 4 = 1
 Infeasib le 

x1 = 1x1 = 0

 Ob jective  va lue =22.2 

x1 = 1 ,  x 2 = 0 ,  x 3 = 0 . 6 ,  x 4 = 1

 Ob jective value =22 

x1 = 1 ,  x 2 = 0 .5, x 3 = 0 ,  x 4 = 1

 Ob jective value =22 

x1 = 1 ,  x 2 = 0 ,  x 3 = 1 ,  x 4 = 0 .5

 Ob jective va lue =2 1 . 6 6  

x1 = 1 ,  x 2 = 0 . 3 3 ,  x  3 = 1 ,  x 4=0

 Ob jective value =22 

x1 = 0 . 75,  x 2 = 0 ,  x 3 = 1 ,  x 4 = 1 

x3 = 0 x3 = 1 

x4 = 1x4 = 0 

•	 Formulation 2: 

xij = 1, i = 1, . . . , n + 1 
j 

� n+1 
xij ≤ 1, ∀j

i=1 

Which formulation is better for the problem?	 Slide 18 

•	 The pigeonhole problem is infeasible. 

•	 For Formulation 1, feasible solution xij = 
n 
1 for all i, j. O(n3) constraints.


Nearly complete enumeration is needed for LP-based BB, since the prob­

lem remains feasible after fixing many variables.


•	 Formulation 2 Infeasible. O(n) constraints. 

•	 Mesage: Formulation of the problem is important! 

3.4 Preprocessing 
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•	 An effective way of improving integer programming formulations prior to and

during branch-and-bound.


•	 Logical Tests 

–	 Removal of empty (all zeros) rows and columns; 

–	 Removal of rows dominated by multiples of other rows; 

–	 strengthening the bounds within rows by comparing individual variables 
and coefficients to the right-hand-side. 

–	 Additional strengthening may be possible for integral variables using round­
ing. 

•	 Probing : Setting temporarily a 0-1 variable to 0 or 1 and redo the logical

tests. Force logical connection between variables. For example, if 5x + 4y + z ≤

8, x, y, z ∈ {0, 1}, then by setting x = 1, we obtain y = 0. This leads to an

inequality x + y ≤ 1.
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4 Application 

4.1 Directed TSP 

4.1.1 Assignment Lower Bound 
Slide 20 

Given a directed graph G = (N, A) with n nodes, and a cost cij for every arc, 
find a tour (a directed cycle that visits all nodes) of minimum cost. 

n n
min 

i=1 j=1 cij xij 

n 
s.t. : 

i=1 xij = 1, j = 1, . . . , n, 
n 

xij = 1, i = 1, ..., n, 
j=1 

xij ∈ {0, 1}. 

Slide 21 

4.2 Improving BB 
Slide 22 

• Better LP solver 

• Use problem structure to derive better branching strategy 

• Better choice of lower bound b(F ) - better relaxation 

• Better choice of upper bound U - heuristic to get good solution 

• KEY: Start pruning the search tree as early as possible 
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