15.081J/6.251J Introduction to Mathematical Programming

Lecture 24: Discrete Optimization

 What is a good formulation? Theme: The Power of Formulations	
2 Integer Programming	
2.1 Mixed IP $ (\text{MIP}) \ \max \ c'x + h'y \\ \text{s.t.} \ Ax + By \leq b \\ x \in Z^n_+(x \geq 0, x \ \text{integer}) \\ y \in R^n_+(y \geq 0) $	SLIDE 2
2.2 Pure IP $ \begin{array}{ccc} \text{(IP)} & \max & c'x \\ & \text{s.t.} & Ax \leq b \\ & x \in Z^n_+ \end{array} $	SLIDE 3
Important special case: Binary IP	
(BIP) $\max \boldsymbol{c}' \boldsymbol{x}$ s.t. $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ $\boldsymbol{x} \in \{0, 1\}^n$	
2.3 LP $ \begin{array}{ccc} (\operatorname{LP}) & \max & \boldsymbol{c}' \boldsymbol{x} \\ & \text{s.t.} & \boldsymbol{B} \boldsymbol{y} \leq \boldsymbol{b} \\ & \boldsymbol{y} \in R^n_+ \end{array} $	SLIDE 4
3 Modeling with Binary Variables	
3.1 Binary Choice	SLIDE 5
$x \in \begin{cases} 1, & \text{if event occurs} \\ 0, & \text{otherwise} \end{cases}$ Example 1: IP formulation of the knapsack problem $n: & \text{projects, total budget } b$ $a_j: & \text{cost of project } j$ $c_j: & \text{value of project } j$ $x_j: & \text{aligner} = \begin{cases} 1, & \text{if project } j \text{ is selected.} \\ 0, & \text{otherwise.} \end{cases}$	SLIDE 6

SLIDE 1

Outline

• Modeling with integer variables

1

$$\max \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_j x_j \leq b$$

$$x_j \in \{0, 1\}$$

3.2 Modeling relations

• At most one event occurs

$$\sum_{j} x_{j} \le 1$$

• Neither or both events occur

$$x_2 - x_1 = 0$$

• If one event occurs then, another occurs

$$0 \le x_2 \le x_1$$

• If x = 0, then y = 0; if x = 1, then y is uncontrained

$$0 \le y \le Ux, \qquad x \in \{0, 1\}$$

3.3 The assignment problem

n people

m jobs

 c_{ij} : cost of assigning person j to job i.

$$x_{ij} = \begin{cases} 1 & \text{person } j \text{is assigned to job } i. \\ 0 & \text{min } \sum_{i=1}^{n} c_{ij} x_{ij} \\ \text{s.t. } \sum_{j=1}^{n} x_{ij} = 1 & \text{each job is assigned} \end{cases}$$

 $\sum_{i=1}^m x_{ij} \leq 1 \quad \text{each person can do at most one job.}$ $x_{ij} \in \{0, 1\}$

Multiple optimal solutions

• Generate all optimal solutions to a BOP.

$$\begin{array}{ll} \max & \boldsymbol{c}'\boldsymbol{x} \\ \text{s.t.} & \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b} \\ & \boldsymbol{x} \in \{0,1\}^n \end{array}$$

- Generate third best?
- Extensions to MIO?

SLIDE 7

SLIDE 8

SLIDE 9

2

3.5 Nonconvex functions

SLIDE 10

• How to model min c(x), where c(x) is piecewise linear but not convex?

4 What is a good formulation?

4.1 Facility Location

SLIDE 11

• Data

$$\begin{split} N &= \{1 \dots n\} \quad \text{potential facility locations} \\ I &= \{1 \dots m\} \quad \text{set of clients} \\ c_j : \quad \text{cost of facility placed at } j \\ h_{ij} : \quad \text{cost of satisfying client } i \text{ from facility } j. \end{split}$$

• Decision variables

$$x_{ij} = \begin{cases} 1, & \text{a facility is placed at location } j \\ 0, & \text{otherwise} \end{cases}$$

$$y_{ij} = \text{fraction of demand of client } i$$
satisfied by facility j .

SLIDE 12

$$IZ_{1} = \min \sum_{j=1}^{n} c_{j}x_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} h_{ij}y_{ij}$$
s.t.
$$\sum_{j=1}^{n} y_{ij} = 1$$

$$y_{ij} \leq x_{j}$$

$$x_{j} \in \{0, 1\}, 0 \leq y_{ij} \leq 1.$$

SLIDE 13

Consider an alternative formulation.

$$IZ_{2} = \min \sum_{j=1}^{n} c_{j}x_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} h_{ij}y_{ij}$$
s.t.
$$\sum_{j=1}^{n} y_{ij} = 1$$

$$\sum_{i=1}^{m} y_{ij} \le m \cdot x_{j}$$

$$x_{j} \in \{0, 1\}, 0 \le y_{ij} \le 1.$$

Are both valid?

Which one is preferable?

4.2 Observations

SLIDE 14

• $IZ_1 = IZ_2$, since the integer points both formulations define are the same.

•

$$P_1 = \left\{ (\boldsymbol{x}, \boldsymbol{y}) : \sum_{j=1}^n y_{ij} = 1, y_{ij} \le x_j, \quad 0 \le x_j \le 1 \\ 0 \le y_{ij} \le 1 \right\}$$

$$P_{2} = \{(\boldsymbol{x}, \boldsymbol{y}) : \sum_{j=1}^{n} y_{ij} = 1, \sum_{i=1}^{m} y_{ij} \leq m \cdot x_{j}, \\ 0 \leq x_{j} \leq 1 \\ 0 \leq y_{ij} \leq 1 \}$$

SLIDE 15

• Let

$$Z_1 = \min \boldsymbol{c} \boldsymbol{x} + \boldsymbol{h} \boldsymbol{y}, \qquad Z_2 = \min \boldsymbol{c} \boldsymbol{x} + \boldsymbol{h} \boldsymbol{y} \ (\boldsymbol{x}, \boldsymbol{y}) \in P_1 \qquad (\boldsymbol{x}, \boldsymbol{y}) \in P_2$$

• $Z_2 \le Z_1 \le IZ_1 = IZ_2$

4.3 Implications

SLIDE 16

- Finding $IZ_1 (= IZ_2)$ is difficult.
- Solving to find Z_1, Z_2 is an LP. Since Z_1 is closer to IZ_1 several methods (branch and bound) would work better (actually much better).
- Suppose that if we solve $\min cx + hy$, $(x, y) \in P_1$ we find an integral solution. Have we solved the facility location problem?

SLIDE 17

- Formulation 1 is better than Formulation 2. (Despite the fact that 1 has a larger number of constraints than 2.)
- What is then the criterion?

4.4 Ideal Formulations

SLIDE 18

- \bullet Let P be an LP relaxation for a problem
- Let

$$H = \{(x, y) : x \in \{0, 1\}^n\} \cap P$$

• Consider Convex Hull (H)

$$=\{oldsymbol{x}:oldsymbol{x}=\sum_{i}\lambda_{i}x^{i},\sum_{i}\lambda_{i}=1,\lambda_{i}\geq0,x^{i}\in H\}$$

SLIDE 19

- The extreme points of CH(H) have $\{0,1\}$ coordinates.
- So, if we know CH(H) explicitly, then by solving $\min cx + hy$, $(x, y) \in CH(H)$ we solve the problem.
- Message: Quality of formulation is judged by closeness to CH(H).

$$CH(H) \subseteq P_1 \subseteq P_2$$

5 Minimum Spanning Tree (MST)

SLIDE 20

- How do telephone companies bill you?
- \bullet It used to be that rate/minute: Boston \to LA proportional to distance in MST
- Other applications: Telecommunications, Transportation (good lower bound for TSP)

SLIDE 21

- Given a graph G = (V, E) undirected and Costs $c_e, e \in E$.
- Find a tree of minimum cost spanning all the nodes.
- Decision variables $x_e = \begin{cases} 1, & \text{if edge } e \text{ is included in the tree} \\ 0, & \text{otherwise} \end{cases}$

SLIDE 22

- The tree should be connected. How can you model this requirement?
- \bullet Let S be a set of vertices. Then S and $V \setminus S$ should be connected
- Let $\delta(S) = \{e = (i, j) \in E : \begin{cases} i \in S \\ j \in V \setminus S \end{cases} \}$
- Then,

$$\sum_{e \in \delta(S)} x_e \ge 1$$

- What is the number of edges in a tree?
- Then, $\sum_{e \in E} x_e = n 1$

5.1 Formulation

SLIDE 23

$$IZ_{MST} = \min \sum_{e \in E} c_e x_e$$

$$H \begin{cases} \sum_{e \in \delta(S)} x_e \ge 1 & \forall S \subseteq V, S \neq \emptyset, V \\ \sum_{e \in E} x_e = n - 1 \\ x_e \in \{0, 1\}. \end{cases}$$

Is this a good formulation?

SLIDE 24

$$P_{cut} = \{ \boldsymbol{x} \in R^{|E|} : 0 \le \boldsymbol{x} \le \boldsymbol{e},$$

$$\sum_{e \in E} x_e = n - 1$$

$$\sum_{e \in \delta(S)} x_e \ge 1 \ \forall \ S \subseteq V, S \ne \emptyset, V \}$$

Is P_{cut} the CH(H)?

5.2 What is CH(H)?

Let

$$P_{sub} = \{ \boldsymbol{x} \in R^{|E|} : \sum_{e \in E} x_e = n - 1 \}$$

$$\sum_{e \in E(S)} x_e \le |S| - 1 \,\forall \, S \subseteq V, \, S \ne \emptyset, V \}$$

$$E(S) = \left\{ e = (i, j) : \begin{array}{l} i \in S \\ j \in S \end{array} \right\}$$
 Why is this a valid IP formulation?

SLIDE 26

SLIDE 25

- Theorem: $P_{sub} = CH(H)$.
- $\Rightarrow P_{sub}$ is the best possible formulation.
- MESSAGE: Good formulations can have an exponential number of constraints.

The Traveling Salesman Problem

SLIDE 27

Given G = (V, E) an undirected graph. $V = \{1, ..., n\}$, costs $c_e \forall e \in E$. Find a tour that minimizes total length.

6.1 Formulation I

SLIDE 28

 $x_e = \begin{cases} 1, & \text{if edge } e \text{ is included in the tour.} \\ 0, & \text{otherwise.} \end{cases}$

$$\begin{array}{ll} \min & \sum\limits_{e \in E} c_e x_e \\ \text{s.t.} & \sum\limits_{e \in \delta(S)} x_e \geq 2, \quad S \subseteq E \\ & \sum\limits_{e \in \delta(i)} x_e = 2, \quad i \in V \\ & x_e \in \{0, 1\} \end{array}$$

6.2Formulation II

SLIDE 29

$$\min_{s.t.} \sum_{e \in E(S)} c_e x_e
\sum_{e \in E(S)} x_e \le |S| - 1, \quad S \subseteq E
\sum_{e \in \delta(i)} x_e = 2, \quad i \in V
x_e \in \{0, 1\}$$

SLIDE 30

$$\begin{split} P_{cut}^{TSP} = & \{x \in R^{|E|}; \sum_{e \in \delta(S)} x_e \geq 2, \sum_{e \in \delta(i)} x_e = 2 \\ 0 \leq x_e \leq 1\} \\ P_{sub}^{TSP} = & \{x \in R^{|E|}; \sum_{e \in \delta(i)} x_e = 2 \\ & \sum_{e \in \delta(S)} x_e \leq |S| - 1 \\ 0 \leq x_e \leq 1\} \end{split}$$

SLIDE 31

- \bullet Theorem: $P_{cut}^{TSP} = P_{sub}^{TSP} \not\supseteq CH(H)$
- Nobody knows CH(H) for the TSP

7 Minimum Matching

SLIDE 32

- Given G = (V, E); c_e costs on $e \in E$. Find a matching of minimum cost.
- Formulation:

$$\begin{array}{ll} \min & \sum c_e x_e \\ \text{s.t.} & \sum_{e \in \delta(i)} x_e = 1, \quad i \in V \\ & x_e \in \{0, 1\} \end{array}$$

• Is the LP ralaxation CH(H)?

SLIDE 33

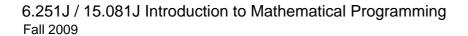
Let

$$P_{MAT} = \{x \in R^{|E|} : \sum_{e \in \delta(i)} x_e = 1$$
$$\sum_{e \in \delta(S)} x_e \ge 1 \quad |S| = 2k + 1, S \ne \emptyset$$
$$x_e \ge 0\}$$

Theorem: $P_{MAT} = CH(H)$

8 Observations

SLIDE 34


- For MST, Matching there are efficient algorithms. CH(H) is known.
- For TSP $\not \exists$ efficient algorithm. TSP is an NP-hard problem. CH(H) is not known.
- Conjuecture: The convex hull of problems that are polynomially solvable are explicitly known.

9 Summary

Slide 35

- 1. An IP formulation is better than another one if the polyhedra of their LP relaxations are closer to the convex hull of the IP.
- 2. A good formulation can have an exponential number of constraints.
- 3. Conjecture: Formulations characterize the complexity of problems. If a problem is solvable in polynomial time, then the convex hull of solutions is known.

MΓ	T OpenCourseWar	re
htt	p://ocw.mit.edu	

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.