
15.081J/6.251J Introduction to Mathematical 
Programming 

Lecture 22: Primal-dual Barrier

Interior Point Algorithm




� 

� � � � 

1 Outline 
Slide 1 

1. The Barrier Problem 

2. Solving Equations 

3. The Primal-Dual Barrier Algorithm 

4. Insight on Behavior 

5. Computational Aspects 

6. Conclusions 

2 The Barrier Problem 
Slide 2 

Barrier problem: 
n 

′min Bµ(x) = c x − µ log xj 

j=1 

s.t. Ax = b 

KKT: 
� � ′ 

1 1 
c − µ , . . . , + A ′ p(µ) = 0 

x1(µ) xn(µ) 

Ax(µ) = b, x(µ) ≥ 0 

2.1 Optimality Conditions 
Slide 3 

µ
Set sj(µ) = 

xj(µ)

Ax(µ) = b


x(µ) ≥ 0


A ′ p(µ) + s(µ) = c


s(µ) ≥ 0


sj(µ)xj(µ) = µ or


X(µ)S(µ)e = eµ


X(µ) = diag x1(µ), . . . , xn(µ) , S(µ) = diag s1(µ), . . . , sn(µ) 

1 



� 

� 

� 

� � �� 

3 Solving Equations 
  

Slide 4 
Ax − b 

 

F (z) = 
 

A ′ p + s − c 
 

XSe − µe 

z = (x, p, s), r = 2n + m 

Solve 
F (z ∗ ) = 0 

3.1 Newton’s method 
Slide 5 

F (z k + d) ≈ F (z k) + J(z k)d 

Here J(zk) is the r × r Jacobian matrix whose (i, j)th element is given by 

∂Fi(z) � 

∂zj z=zk 

F (z k) + J(z k)d = 0 

Set zk+1 = zk + d (d is the Newton direction) Slide 6 
(x k , p k , s k) current primal and dual feasible solution 
Newton direction d = (dk , dp

k , dk)x s

     

A 0 0 dk
x Axk − b 

    k  

 

0 A ′ I 
 

dp
k 

 
= − 

 
A ′ p + s k − c 

 

Sk 0 Xk dk
s 

XkSke − µke 

3.2 Step lengths 
Slide 7 

k+1 k + βk dk x = x P x 

p k+1 = p k + βk dk 
D p 

s k+1 = s k + βk dk 
D s 

To preserve nonnegativity, take 

k 
iβk = min 1, α min − 

x
,P 

{i|(dk )i<0} (dk)ix x
� � 

k 
�� 

βk si 
D = min 1, α min − , 

{i|(dk
s )i<0} (dk

s )i 

0 < α < 1 

2 



� � �� 

� � �� 

� � 

� � 

4 The Primal-Dual Barrier Algorithm 
Slide 8 

1. (Initialization) Start with x0 > 0, s0 > 0, p0, and set k = 0 

2. (Optimality test) If (sk) ′ xk < ǫ stop; else go to Step 3. 

3. (Computation of Newton directions) 

(sk) ′ xk 
k µ = 

n


Xk = diag(x k 
1 , . . . , x kn)


Sk = diag(s1 
k , . . . , s n

k )


Solve linear system 

  k    

A 0 0 dx Axk − b 
    k  

 
0 A ′ I 

 
dp

k 
 

= − 
 

A ′ p + sk − c 
 

Sk 0 Xk dk XkSke − µ k e 
s 

Slide 9 

4. (Find step lengths) 

k 
iβP

k = min 1, α min − 
(d

x
k{i|(dk )i <0} )ix x

k 

βk = min 1, α min − 
si 

D (dk{i|(dk
s )i<0} s )i 

5. (Solution update) 

x k+1 = x k + βP
k dk

x 

p k+1 = p k + βk dk 
D p 

k+1 k + βk dk s = s D s 

6. Let k := k + 1 and go to Step 2 

5 Insight on behavior 
Slide 10 

• Affine Scaling 

daffine = −X
2 

I − A ′ (AX
2
A ′ )−1

AX
2 

c 

• Primal barrier 

dprimal−barrier = 
� 

I − X
2
A ′ (AX

2
A ′ )−1

A 
� 

Xe − 

1 
X

2 
c 

µ 

3 



�	 � 

� � 

� � 

•	 For µ = ∞ 

dcentering = I − X
2
A ′ (AX

2
A ′ )−1

A Xe 

•	 Note that 
1 

dprimal−barrier = dcentering + daffine 
µ 

•	 When µ is large, then the centering direction dominates, i.e., in the beginning,

the barrier algorithm takes steps towards the analytic center


•	 When µ is small, then the affine scaling direction dominates, i.e., towards the

end, the barrier algorithm behaves like the affine scaling algorithm


6 Computational aspects of IPMs 
Slide 11 

Simplex vs. Interior point methods (IPMs) 

•	 Simplex method tends to perform poorly on large, massively degenerate

problems, whereas IP methods are much less affected.


•	 Key step in IPMs 
2AXk

kA ′ is usually written as 

A ′ d = f 

2In implementations of IPMs AX• 

kAX2 

where L is a square lower triangular matrix called the Cholesky factor 

•	 Solve system 

A ′ = LL ′ , 

2AXk

by solving the triangular systems


Ly = f , L ′ d = y


•	 The construction of L requires O(n3) operations; but the actual compu­

tational effort is highly dependent on the sparsity (number of nonzero

entries) of L


•	 Large scale implementations employ heuristics (reorder rows and columns

of A) to improve sparsity of L. If L is sparse, IPMs are stronger.


7 Conclusions 
Slide 12 

•	 IPMs represent the present and future of Optimization. 

•	 Very successful in solving very large problems. 

•	 Extend to general convex problems 

4 

A ′ d = f 



MIT OpenCourseWare
http://ocw.mit.edu 

6.251J / 15.081J Introduction to Mathematical Programming 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu

