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2 The Barrier Problem
Barrier problem:

min B,(z) =z — uZlogzj
j=1

st. Az =0>b
KKT:
( ! ! )/+A’ (u)=0
c— [ p(p) =
r1(p) Ty ()

Az(u)=b,  x(u) >0

2.1 Optimality Conditions

I
St =2 T
xr(p) =
x(p) = 0
A'p(p) +s(p) = c
s(u) > 0
sj(Wx;(pn) = np or
X(u)S(we = ep
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3 Solving Equations

Az —b
F(z)=| Ap+s—c
XSe — e
z=(x,p,8),r=2n+m
Solve
F(z*)=0

3.1 Newton’s method
F(zF +d) ~ F(z") 4+ J(z")d
Here J(z*) is the 7 x r Jacobian matrix whose (i,7)th element is given by

OF;(z)
aZj

z=z*
F(zM)+J(z")d=0

Set 281 = 2% 1+ d (d is the Newton direction)
(x¥, p*, s*) current primal and dual feasible solution
Newton direction d = (d*, d*, d")

) Yp>
A 0 O d* Azk — b
0o A I d’; =—| ApF+sF—c
S, 0 X, d’; X, Sre — yFe

3.2 Step lengths

@t = of 1 phd;
" = p* + Bhd,

1 k
s = 5"+ Bhdy

To preserve nonnegativity, take

T
g = min{l,a min < )},
r {il@s) <oy \ (dk);

gk
Bk = min{l,a min < L )},
P {ilas) <oy \ (dk);

0<a<l1
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The Primal-Dual Barrier Algorithm

(Initialization) Start with ° > 0, s° > 0, p°, and set k = 0
(Optimality test) If (s*) 2" < e stop; else go to Step 3.

(Computation of Newton directions)

Solve linear system

A 0 O
0 A I
Sy 0 X

(Find step lengths)

dt AzF — b
d]; = A’pk +sk—¢
dF X Sre — e

zk
g = min{l,a min ( : )}
r {il@s)i<oy \ (dk);

Pl
By = min{l,a min <— : >}
P {il@)i<oy \ (dk);

(Solution update)
!
s

Sk+1

Let k:=k+ 1 and go to Step 2

Insight on behavior

e Affine Scaling

= «* + ppd,
= p" +/pd,
= " + phdl

dattine = — X2 (1 - A’(AX2A’)*1AX2>C

e Primal barrier

dprimal—barrier = (I - XQAI(AX2A/)71A) (Xe - l.X2C)
I
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6

For p = o0
dcentering = (I - X2A/(AX2A/)71A) Xe
Note that

dprimal—barrier = dcentering + ;dafﬁne

When p is large, then the centering direction dominates, i.e., in the beginning,
the barrier algorithm takes steps towards the analytic center

When p is small, then the affine scaling direction dominates, i.e., towards the
end, the barrier algorithm behaves like the affine scaling algorithm

Computational aspects of IPMs

Simplex vs. Interior point methods (IPMs)

Simplex method tends to perform poorly on large, massively degenerate
problems, whereas IP methods are much less affected.

Key step in IPMs
(AX;A)d = f

In implementations of IPMs AX iA’ is usually written as
AX?A = LL,
where L is a square lower triangular matrix called the Cholesky factor

Solve system
(AX3A)d = f

by solving the triangular systems
Ly=f, Ld=y
The construction of L requires O(n®) operations; but the actual compu-

tational effort is highly dependent on the sparsity (number of nonzero
entries) of L

Large scale implementations employ heuristics (reorder rows and columns
of A) to improve sparsity of L. If L is sparse, IPMs are stronger.

Conclusions

IPMs represent the present and future of Optimization.
Very successful in solving very large problems.

Extend to general convex problems

SLIDE 11

SLIDE 12



MIT OpenCourseWare
http://ocw.mit.edu

6.251J / 15.081J Introduction to Mathematical Programming
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu/terms
http://ocw.mit.edu

