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Lecture 21: Primal Barrier
Interior Point Algorithm
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Barrier methods

Strategy

A barrier function G(x) is a continous function with the property that is
approaches co as one of g;(x) approaches 0 from negative values.

Examples:

Glz) = = Y logl—g;(x)), Glw) ==Y —

= 9i(x)

k1 <k and p* — 0.

Consider a sequence of pF: 0 < p
Consider the problem

2t = argming. { f(x) + 1" C(x)}

Theorem Every limit point ¥ generated by a barrier method is a global
minimum of the original constrained problem.
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2.2 Primal path-following

IPMs for LO
(P) min c'=z (D) max b'p
st. Az =0»b st. A'p+s=c

x>0 s>0
Barrier problem:
n
min By(z)=c'z—p Zlog x;
j=1

st. Ax=0b
Minimizer: x(u)

3 Central Path

e As yu varies, minimizers @(u) form the central path
e lim, .o x(u) exists and is an optimal solution «* to the initial LP

e For 1 = oo, x(00) is called the analytic center

n
min —E log x;
j=1

st. Az =0

3.1 Example

min To
st. x14+ao+r3=1
x1,%2, 23 > 0
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o ()= {m | € = (21,0, 23), ©1 +x3 =1, > 0}, set of optimal solutions to
original LP

e The analytic center of @ is (1/2,0,1/2)

min  xo — plogxry — plogas — plogxs
st. zi+as+x3=1

min  zy — plogay — plogws — plog(l — x1 — x9).

ri(p) = 1_+2(M)

o) = 14 3p—+/1+9u%+2pu
2 2

r3(p) = 1_+2(M)

The analytic center: (1/3,1/3,1/3)

3.2 Solution of Central Path

e Barrier problem for dual:

n
max p'b+p Z log s;
j=1
st. pPA+s =c

e Solution (KKT):

Az(p) = b

x(pn) > 0

A'p(p) +s(p) = ¢
s(u) > 0
X(p)S(pe = en
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e Theorem: If x*, p*, and s* satisfy optimality conditions, then they are
optimal solutions to problems primal and dual barrier problems.

e Goal: Solve barrier problem

n
min By (x) =c'z — uZlogmj
j=1

st. Axz=0»>

4 Approximating the central path

OBu(x) _ K
= ¢ — —
31‘1' €Z;
9?B(x) _ K
z? o z?
82B#(m) L
axiaxj N 07 ! ?é J
Given a vector & > 0:
", OB
Bu@+d) ~ B(x)+ a*;(_ La,

i=1

2Z 3%

4,j=1

1
= Bu(x) + (¢ —pe/ X 1)d + §ud’X_2d

X = diag(z1,...,x,)
Approximating problem:

1
min (¢ — pe’ X Y)d + §,ud/X_2d
st. Ad=0

Solution (from Lagrange):

c—pX le+uXd-Ap =0
Ad =0
e System of m +n linear equations, with m + n unknowns (d;, j =1,...,n,

and p;, 1 =1,...,m).
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Solution:
2 Al 2 A\—1 1 2
d(u) = (IfX A(AX2A) A)<a:e—X c)
I
p() = (AX*A)LA(X c — pe)

The Newton connection

d(p) is the Newton direction; process of calculating this direction is called

a Newton step
Starting with @, the new primal solution is @ + d(u)
The corresponding dual solution becomes (p, s) = (p(n),c — A'p(p))

We then decrease pton =ap, 0 < a<1

Geometric Interpretation

Take one Newton step so that  would be close to x(u)

Measure of closeness

< B,
I

0<p <1, X =diag(zs,...,x,) S =diag(s,...,sn)

1
H—X.S'e—e

As . — 0, the complementarity slackness condition will be satisfied
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5 The Primal Barrier Algorithm

SLIDE 19
Input
(a) (A, b, ¢); A has full row rank;
(b) z° >0, s> 0, p’
(c) optimality tolerance e > 0;
(d) u° and a, where 0 < o < 1. SLIDE 20
1. (Initialization) Start with some primal and dual feasible z° > 0, s >
0, p°, and set k = 0.
2. (Optimality test) If (s*)'z* < € stop; else go to Step 3.
3. Let
X = diag(ah, ... 2%),
pE = quk
SLIDE 21
4. (Computation of directions) Solve the linear system
uk+1X;2d —A'p = M’”lX;le —c
Ad =0
5. (Update of solutions) Let
"t = 2F 1 d,
L
sPtl = c— A'p.
6. Let k:=k+ 1 and go to Step 2.
6 Correctness
/B SLIDE 22
: p—p
Theorem Given o =1 — ————, 3 < 1, (2,5, p°%), (z° > 0, s" > 0):
VB +vn
1
—0X0506 — € S ﬁ
1

Then, after

(VB (620045
K_[\/B—Blg - 5) l

iterations, (x€, 8%, p) is found:

p

(s%)xl <e.



6.1 Proof SLIDE 23

|<B

e Claim (by induction): |#—1,€XkSke —e

e For k = 0 we have assumed it

e Assume it holds for k;

1 1
~|WXkSke_6| = "a—,ukaSke_e |
1/ 1 1-—
= |—(—kaS’kee>+ el
a\ B
1], 1 11—«
< —’|—,€Xk5k€€ | + llell
o p
< é+ﬂﬁ
o a

VB
e We next show that ||X;1d|| < /B < 1, where d = 2"+ — 2*.

e d solves

,uk-HX,;Qd —Alp ukHX,;le —e,
Ad =0

e By left-multiplying the first equation by d’

A X2d=d (,ukHX,:le _ c)

X d” = dX%d

/
1
X 'le——¢c|d
( § u‘““)

_ 1 RN

!
1
= ([ Xx7le———5")d
( SRNTES )

!
1 _
= (WXkSkee> Xkld

XSre el [| X d||

IN

1
|Mk+1

VolIX )|

IA

hence, || X 'd|| < VB < 1.



e We next show that **! and (pk+1,sk+1) are primal and dual feasible Since
Ad = 0, we have
Az = b
= " +d=Xi(e+ X, 'd) >0,
because || X; 'd|| < 1

Alphtl 4 gkt

p =

by construction and
st =c— A" =" X e — X ) > 0,
because || X} 'd|| < 1

k+1 _  k dj
x; = x; (1+F
J

k+1 _ M %5
S5 = % 1 ax’?>'
J J

Therefore,

1 k41 _k+1 _ 1 k d; ,ukH d;

e D =diag(di,...,dn), |lulli =), |ui|. Note that |[u|| < ||u||:

1 —2792
‘|ka+lsk+lee| = [|X;*D%]|
< |IXi*D%]|,
= X, ’D%
= DX ’De
= dX;%d
= |Ixidlr
< (VB
= B,
and hence the induction is complete.
e Since at every iteration
1
‘|EXkSke—e |<p

1
—ﬂsﬁxﬁsi—lgﬂ

npt (1= B) < (s)'a" <np*(1 4 8)



_ k /B8
pt=au’ = (1_M> WO < e VR O

VB+/n
o After
VB+vn,  p'n(l+p) VB+vn, (921 +8)]
[x/ﬁ—ﬂbg -‘<[x/ﬁ—ﬁlog (1-P) W‘K

iterations, the primal barrier algorithm finds primal and dual solutions =¥,
(p™, s%), that have duality gap (s™)'z” less than or equal to €

Complexity

SLIDE 24
e Work per iteration involves solving a linear system with m + n equations

in m + n unknowns. Given that m < n, the work per iteration is O(n?).

9)'x%: initial duality gap. Algorithm needs

o (vine2)

.60:(8

iterations to reduce the duality gap from ¢ to €, with O(n?) arithmetic
operations per iteration.
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