15.081J/6.251J Introduction to Mathematical Programming

Lecture 21: Primal Barrier Interior Point Algorithm

1 Outline

SLIDE 1

- 1. Barrier Methods
- 2. The Central Path
- 3. Approximating the Central Path
- 4. The Primal Barrier Algorithm
- 5. Correctness and Complexity

2 Barrier methods

SLIDE 2

min
$$f(\boldsymbol{x})$$

s.t. $g_j(\boldsymbol{x}) \le 0$, $j = 1, ..., p$
 $h_i(\boldsymbol{x}) = 0$, $i = 1, ..., m$
 $S = \{\boldsymbol{x} | g_j(\boldsymbol{x}) < 0, j = 1, ..., p,$

$$h_i(\boldsymbol{x}) = 0, \ i = 1, \dots, m\}$$

2.1 Strategy

SLIDE 3

- A barrier function G(x) is a continous function with the property that is approaches ∞ as one of $g_j(x)$ approaches 0 from negative values.
- Examples:

$$G(x) = -\sum_{j=1}^{p} \log(-g_j(x)), \ G(x) = -\sum_{j=1}^{p} \frac{1}{g_j(x)}$$

SLIDE 4

- Consider a sequence of μ^k : $0 < \mu^{k+1} < \mu^k$ and $\mu^k \to 0$.
- Consider the problem

$$\boldsymbol{x}^k = \operatorname{argmin}_{\boldsymbol{x} \in S} \left\{ f(\boldsymbol{x}) + \mu^k G(\boldsymbol{x}) \right\}$$

• Theorem Every limit point x^k generated by a barrier method is a global minimum of the original constrained problem.

2.2 Primal path-following IPMs for LO

 $\begin{array}{cccccc} (P) & \min & \boldsymbol{c'x} & & & (D) & \max & \boldsymbol{b'p} \\ & \text{s.t.} & \boldsymbol{Ax=b} & & & \text{s.t.} & \boldsymbol{A'p+s=c} \\ & & & & & s \geq 0 \end{array}$

Barrier problem:

min
$$B_{\mu}(x) = c'x - \mu \sum_{j=1}^{n} \log x_j$$

s.t. $Ax = b$

Minimizer: $\boldsymbol{x}(\mu)$

3 Central Path

SLIDE 6

SLIDE 5

- As μ varies, minimizers $\boldsymbol{x}(\mu)$ form the central path
- $\lim_{\mu \to 0} x(\mu)$ exists and is an optimal solution x^* to the initial LP
- For $\mu = \infty$, $\mathbf{x}(\infty)$ is called the analytic center

min
$$-\sum_{j=1}^{n} \log x_j$$

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

SLIDE 7

3.1 Example

SLIDE 8

min
$$x_2$$

s.t. $x_1 + x_2 + x_3 = 1$
 $x_1, x_2, x_3 \ge 0$

- $Q = \{ \boldsymbol{x} \mid \boldsymbol{x} = (x_1, 0, x_3), \ x_1 + x_3 = 1, \ \boldsymbol{x} \ge \boldsymbol{0} \}$, set of optimal solutions to original LP
- The analytic center of Q is (1/2, 0, 1/2)

$$\begin{aligned} & \min & & x_2 - \mu \log x_1 - \mu \log x_2 - \mu \log x_3 \\ & \text{s.t.} & & x_1 + x_2 + x_3 = 1 \end{aligned}$$

min $x_2 - \mu \log x_1 - \mu \log x_2 - \mu \log(1 - x_1 - x_2)$.

$$x_1(\mu) = \frac{1 - x_2(\mu)}{2}$$

$$x_2(\mu) = \frac{1 + 3\mu - \sqrt{1 + 9\mu^2 + 2\mu}}{2}$$

$$x_3(\mu) = \frac{1 - x_2(\mu)}{2}$$

The analytic center: (1/3, 1/3, 1/3)

SLIDE 9

3.2 Solution of Central Path

SLIDE 10

• Barrier problem for dual:

$$\max \quad p'b + \mu \sum_{j=1}^{n} \log s_{j}$$
s.t.
$$p'A + s' = c'$$

• Solution (KKT):

$$egin{array}{ll} Ax(\mu) &= b \ x(\mu) &\geq 0 \ A'p(\mu) + s(\mu) &= c \ s(\mu) &\geq 0 \ X(\mu)S(\mu)e &= e\mu \end{array}$$

- Theorem: If x^* , p^* , and s^* satisfy optimality conditions, then they are optimal solutions to problems primal and dual barrier problems.
- Goal: Solve barrier problem

min
$$B_{\mu}(x) = c'x - \mu \sum_{j=1}^{n} \log x_j$$

s.t. $Ax = b$

4 Approximating the central path

SLIDE 12

$$\frac{\partial B_{\mu}(\mathbf{x})}{\partial x_{i}} = c_{i} - \frac{\mu}{x_{i}}$$

$$\frac{\partial^{2} B_{\mu}(\mathbf{x})}{\partial x_{i}^{2}} = \frac{\mu}{x_{i}^{2}}$$

$$\frac{\partial^{2} B_{\mu}(\mathbf{x})}{\partial x_{i} \partial x_{j}} = 0, \quad i \neq j$$

Given a vector x > 0:

SLIDE 13

$$B_{\mu}(\boldsymbol{x} + \boldsymbol{d}) \approx B_{\mu}(\boldsymbol{x}) + \sum_{i=1}^{n} \frac{\partial B_{\mu}(\boldsymbol{x})}{\partial x_{i}} d_{i} + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} B_{\mu}(\boldsymbol{x})}{\partial x_{i} \partial x_{j}} d_{i} d_{j}$$
$$= B_{\mu}(\boldsymbol{x}) + (\boldsymbol{c}' - \mu \boldsymbol{e}' \boldsymbol{X}^{-1}) \boldsymbol{d} + \frac{1}{2} \mu \boldsymbol{d}' \boldsymbol{X}^{-2} \boldsymbol{d}$$

 $X = diag(x_1, ..., x_n)$ Approximating problem: SLIDE 14

min
$$(c' - \mu e' X^{-1})d + \frac{1}{2}\mu d' X^{-2}d$$

s.t. $Ad = 0$

Solution (from Lagrange):

$$c - \mu X^{-1}e + \mu X^{-2}d - A'p = 0$$
$$Ad = 0$$

SLIDE 15

• System of m+n linear equations, with m+n unknowns $(d_j, j=1,\ldots,n,$ and $p_i, i=1,\ldots,m)$.

• Solution:

$$egin{aligned} oldsymbol{d}(\mu) &= \Big(oldsymbol{I} - oldsymbol{X}^2 oldsymbol{A}'(oldsymbol{A}oldsymbol{X}^2 oldsymbol{A}')^{-1} oldsymbol{A} \Big(oldsymbol{x} oldsymbol{e} - rac{1}{\mu} oldsymbol{X}^2 oldsymbol{c} \ oldsymbol{p}(\mu) &= (oldsymbol{A}oldsymbol{X}^2 oldsymbol{A}')^{-1} oldsymbol{A} (oldsymbol{X}^2 oldsymbol{c} - \mu oldsymbol{x} oldsymbol{e}) \end{aligned}$$

4.1 The Newton connection

SLIDE 16

- $d(\mu)$ is the Newton direction; process of calculating this direction is called a Newton step
- Starting with x, the new primal solution is $x + d(\mu)$
- ullet The corresponding dual solution becomes $(oldsymbol{p},oldsymbol{s})=ig(oldsymbol{p}(\mu),oldsymbol{c}-oldsymbol{A}'oldsymbol{p}(\mu)ig)$
- We then decrease μ to $\overline{\mu} = \alpha \mu$, $0 < \alpha < 1$

4.2 Geometric Interpretation

SLIDE 17

- Take one Newton step so that x would be close to $x(\mu)$
- Measure of closeness

$$\left|\left|\frac{1}{\mu} X S e - e\right|\right| \le \beta,$$

 $0 < \beta < 1, \mathbf{X} = \operatorname{diag}(\mathbf{x}_1, \dots, \mathbf{x}_n) \mathbf{S} = \operatorname{diag}(\mathbf{s}_1, \dots, \mathbf{s}_n)$

• As $\mu \to 0$, the complementarity slackness condition will be satisfied

SLIDE 18

5 The Primal Barrier Algorithm

SLIDE 19

Input

- (a) (A, b, c); A has full row rank;
- (b) $x^0 > 0$, $s^0 > 0$, p^0 ;
- (c) optimality tolerance $\epsilon > 0$;
- (d) μ^0 , and α , where $0 < \alpha < 1$.

SLIDE 20

- 1. (Initialization) Start with some primal and dual feasible $x^0 > 0$, $s^0 > 0$, p^0 , and set k = 0.
- 2. (Optimality test) If $(s^k)'x^k < \epsilon$ stop; else go to Step 3.
- **3.** Let

$$X_k = \operatorname{diag}(x_1^k, \dots, x_n^k),$$

 $\mu^{k+1} = \alpha \mu^k$

SLIDE 21

4. (Computation of directions) Solve the linear system

$$\mu^{k+1} oldsymbol{X}_k^{-2} oldsymbol{d} - oldsymbol{A}' oldsymbol{p} = \mu^{k+1} oldsymbol{X}_k^{-1} oldsymbol{e} - oldsymbol{c} \ oldsymbol{A} oldsymbol{d} = oldsymbol{0}$$

5. (Update of solutions) Let

$$x^{k+1} = x^k + d,$$

 $p^{k+1} = p,$
 $s^{k+1} = c - A'p.$

6. Let k := k + 1 and go to Step 2.

6 Correctness

Slide 22

$$\underline{\text{Theorem}} \text{ Given } \alpha = 1 - \frac{\sqrt{\beta} - \beta}{\sqrt{\beta} + \sqrt{n}}, \, \beta < 1, \, (\boldsymbol{x}^0, \boldsymbol{s}^0, \boldsymbol{p}^0), \, (\boldsymbol{x}^0 > \boldsymbol{0}, \, \boldsymbol{s}^0 > \boldsymbol{0}):$$

$$\left|\left|\frac{1}{\mu^0} \boldsymbol{X}_0 \boldsymbol{S}_0 \boldsymbol{e} - \boldsymbol{e}\right|\right| \leq \beta.$$

Then, after

$$K = \left\lceil \frac{\sqrt{\beta} + \sqrt{n}}{\sqrt{\beta} - \beta} \log \frac{(s^0)' x^0 (1 + \beta)}{\epsilon (1 - \beta)} \right\rceil$$

iterations, $(\boldsymbol{x}^K, \boldsymbol{s}^K, \boldsymbol{p}^K)$ is found:

$$(\boldsymbol{s}^K)'\boldsymbol{x}^K \leq \epsilon.$$

6.1 Proof Slide 23

- Claim (by induction): $\left| \left| \frac{1}{\mu^k} X_k S_k e e \right| \right| \leq \beta$
- For k = 0 we have assumed it
- Assume it holds for k;

$$\begin{aligned} \left| \left| \frac{1}{\mu^{k+1}} X_k S_k e - e \right| \right| &= \left| \left| \frac{1}{\alpha \mu^k} X_k S_k e - e \right| \right| \\ &= \left| \left| \frac{1}{\alpha} \left(\frac{1}{\mu^k} X_k S_k e - e \right) + \frac{1 - \alpha}{\alpha} e \right| \right| \\ &\leq \frac{1}{\alpha} \left| \left| \frac{1}{\mu^k} X_k S_k e - e \right| + \frac{1 - \alpha}{\alpha} ||e|| \\ &\leq \frac{\beta}{\alpha} + \frac{1 - \alpha}{\alpha} \sqrt{n} \\ &= \sqrt{\beta} \end{aligned}$$

- We next show that $||\boldsymbol{X}_k^{-1}\boldsymbol{d}|| \leq \sqrt{\beta} < 1$, where $\boldsymbol{d} = \boldsymbol{x}^{k+1} \boldsymbol{x}^k$.
- \bullet **d** solves

$$\mu^{k+1} X_k^{-2} d - A' p = \mu^{k+1} X_k^{-1} e - c,$$

$$A d = 0.$$

 $\bullet\,$ By left-multiplying the first equation by d'

$$\mu^{k+1} d' X_k^{-2} d = d' \Big(\mu^{k+1} X_k^{-1} e - c \Big)$$

$$\begin{split} ||\boldsymbol{X}_{k}^{-1}\boldsymbol{d}||^{2} &= \boldsymbol{d}'\boldsymbol{X}_{k}^{-2}\boldsymbol{d} \\ &= \left(\boldsymbol{X}_{k}^{-1}\boldsymbol{e} - \frac{1}{\mu^{k+1}}\boldsymbol{c}\right)'\boldsymbol{d} \\ &= \left(\boldsymbol{X}_{k}^{-1}\boldsymbol{e} - \frac{1}{\mu^{k+1}}(\boldsymbol{s}^{k} + \boldsymbol{A}'\boldsymbol{p}^{k})\right)'\boldsymbol{d} \\ &= \left(\boldsymbol{X}_{k}^{-1}\boldsymbol{e} - \frac{1}{\mu^{k+1}}\boldsymbol{s}^{k}\right)'\boldsymbol{d} \\ &= -\left(\frac{1}{\mu^{k+1}}\boldsymbol{X}_{k}\boldsymbol{S}_{k}\boldsymbol{e} - \boldsymbol{e}\right)'\boldsymbol{X}_{k}^{-1}\boldsymbol{d} \\ &\leq \left|\left|\frac{1}{\mu^{k+1}}\boldsymbol{X}_{k}\boldsymbol{S}_{k}\boldsymbol{e} - \boldsymbol{e}\right|\right|||\boldsymbol{X}_{k}^{-1}\boldsymbol{d}|| \\ &\leq \sqrt{\beta}||\boldsymbol{X}_{k}^{-1}\boldsymbol{d}|| \end{split}$$

hence, $||\boldsymbol{X}_k^{-1}\boldsymbol{d}|| \leq \sqrt{\beta} < 1$.

ullet We next show that $oldsymbol{x}^{k+1}$ and $(oldsymbol{p}^{k+1}, oldsymbol{s}^{k+1})$ are primal and dual feasible Since Ad = 0, we have

$$egin{aligned} Ax^{k+1} &= oldsymbol{b} \ x^{k+1} &= x^k + oldsymbol{d} = oldsymbol{X}_k(oldsymbol{e} + oldsymbol{X}_k^{-1}oldsymbol{d}) > oldsymbol{0}, \end{aligned}$$

$$oldsymbol{x}^{\kappa+1} = oldsymbol{x}^{\kappa} + oldsymbol{d} = oldsymbol{X}_k(e + oldsymbol{X}_k^{-1}oldsymbol{d}) > oldsymbol{0}$$

because $||\boldsymbol{X}_k^{-1}\boldsymbol{d}|| < 1$

$$A'p^{k+1} + s^{k+1} = c,$$

by construction and

$$s^{k+1} = c - A'p^{k+1} = \mu^{k+1}X_k^{-1}(e - X_k^{-1}d) > 0,$$

because $||\boldsymbol{X}_k^{-1}\boldsymbol{d}|| < 1$

$$x_j^{k+1} = x_j^k \left(1 + \frac{d_j}{x_j^k} \right),$$

$$s_j^{k+1} = \frac{\mu^{k+1}}{x_j^k} \left(1 - \frac{d_j}{x_j^k} \right).$$

Therefore,

$$\begin{split} \frac{1}{\mu^{k+1}} x_j^{k+1} s_j^{k+1} - 1 &= \frac{1}{\mu^{k+1}} x_j^k \left(1 + \frac{d_j}{x_j^k} \right) \frac{\mu^{k+1}}{x_j^k} \left(1 - \frac{d_j}{x_j^k} \right) - 1 \\ &= - \left(\frac{d_j}{x_j^k} \right)^2. \end{split}$$

• $D = \text{diag}(d_1, \dots, d_n), ||\boldsymbol{u}||_1 = \sum_i |u_i|$. Note that $||\boldsymbol{u}|| \le ||\boldsymbol{u}||_1$

$$\begin{aligned} \left| \left| \frac{1}{\mu^{k+1}} X_{k+1} S_{k+1} e - e \right| \right| &= \left| \left| X_k^{-2} D^2 e \right| \right| \\ &\leq \left| \left| X_k^{-2} D^2 e \right| \right|_1 \\ &= e' X_k^{-2} D^2 e \\ &= e' D X_k^{-2} D e \\ &= d' X_k^{-2} d \\ &= \left| \left| X_k^{-1} d \right| \right|^2 \\ &\leq (\sqrt{\beta})^2 \\ &= \beta, \end{aligned}$$

and hence the induction is complete.

• Since at every iteration

$$\left| \left| \frac{1}{\mu^k} \boldsymbol{X}_k \boldsymbol{S}_k \boldsymbol{e} - \boldsymbol{e} \right| \right| \le \beta$$
$$-\beta \le \frac{1}{\mu^k} x_j^k s_j^k - 1 \le \beta$$
$$n\mu^k (1 - \beta) \le (s^k)' \boldsymbol{x}^k \le n\mu^k (1 + \beta)$$

$$\mu^k = \alpha^k \mu^0 = \left(1 - \frac{\sqrt{\beta} - \beta}{\sqrt{\beta} + \sqrt{n}}\right)^k \mu^0 \le e^{-k\frac{\sqrt{\beta} - \beta}{\sqrt{\beta} + \sqrt{n}}} \mu^0$$

• After

$$\left\lceil \frac{\sqrt{\beta} + \sqrt{n}}{\sqrt{\beta} - \beta} \log \frac{\mu^0 n(1+\beta)}{\epsilon} \right\rceil \leq \left\lceil \frac{\sqrt{\beta} + \sqrt{n}}{\sqrt{\beta} - \beta} \log \frac{(s^0)' x^0 (1+\beta)}{\epsilon (1-\beta)} \right\rceil = K$$

iterations, the primal barrier algorithm finds primal and dual solutions \boldsymbol{x}^K , $(\boldsymbol{p}^K, \boldsymbol{s}^K)$, that have duality gap $(\boldsymbol{s}^K)'\boldsymbol{x}^K$ less than or equal to ϵ

7 Complexity

SLIDE 24

- Work per iteration involves solving a linear system with m+n equations in m+n unknowns. Given that $m \leq n$, the work per iteration is $O(n^3)$.
- $\epsilon_0 = (s^0)'x^0$: initial duality gap. Algorithm needs

$$O\left(\sqrt{n}\log\frac{\epsilon_0}{\epsilon}\right)$$

iterations to reduce the duality gap from ϵ_0 to ϵ , with $O(n^3)$ arithmetic operations per iteration.

MΓ	T OpenCourseWar	re
htt	p://ocw.mit.edu	

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.