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2 History
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e In 1984, Karmakar at AT&T “invented” interior point method
e In 1985, Affine scaling “invented” at IBM 4+ AT&T seeking intuitive ver-
sion of Karmarkar’s algorithm
e In early computational tests, A.S. far outperformed simplex and Kar-
markar’s algorithm
e In 1989, it was realised Dikin invented A.S. in 1967
3 Geometric intuition
3.1 Notation
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min cx
st. Ax = b
x>0
and its dual
max p'b
st. pPA<c

e P={x|Ax=0b, x>0}

e {x € P|x > 0} the interior of P and its elements interior points



%

3.2 The idea
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4 Algebraic development
4.1 Theorem
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Be(0,1),yeR": y >0, and
n - (xl - yl)2 2
S=_ze®R Wi 7 ¥i) g2
Then, > 0 for every « € S
Proof
e xcsS
o (zi—y)® <P <yl
e |z; —yi| < yi; —xi +vi < yi, and hence z; > 0 SLIDE 6

x € S is equivalent to HY*l(:c —y)|| <8
Replace original LP:
min cx
st. Ar=0»
Y~z —y)|l <b



min c'd
st. Ad=0
Y ~'d|| <

4.2 Solution
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If rows of A are linearly independent and ¢ is not a linear combination of the
rows of A, then
e optimal solution d*:
Y(c— A
d=— (c—,p), p=(AY?A")"1AY %c.
[Y (c— A'p)|
ex=y+d'cP
o dux=cy-p|lY(c—Ap)|| <y
4.2.1 Proof
roo SLIDE 8
e AY?A’is invertible;if not, there exists some z # 0 such that 2’ AY2A’z =0
e w=YAz,ww=0 = w=0
e Hence A’z = 0 contradiction
e Since c is not a linear combination of the rows of A, ¢ — A'p # 0 and d* is well
defined
e d* feasible v "
Yo = g APy =
|[Y (c— A'p)||
Ad* =0, since AY?*(c— A’p) =0
)
cd = (¢ —p'A)d
= ( —pAYY 'd
> —|[Y(e—A'p)||- [[Y ||
> —p||Y(c— A'p)||.
SLIDE 9

cld* — (lep/A)d*

P g Yi(e—A'p)
= P A A
 (Y(c-Ap) (Y(c— Ap))
- Y (c— A'p)]|
= 8[|y (c—A'p)]I

e cz=cy+cd =cy- ﬁ“Y(cf A’p)||



4.3 Interpretation

e y be a nondegenerate BFS with basis B
e A=[B N]

e Y = diag(y1,...,Ym,0,...,0) and Y = diag(y1,. ..

[BY o 0]
p = (AY?A)"1AY?c
= (B)'Y,*B 'BYicp
= (B/)ich

Vectors p dual estimates

!/
e r = ¢ — A'p becomes reduced costs:

r=c— A'(B') 'cp

Under degeneracy?

4.4 Termination

y and p be primal and dual feasible solutions with
dy—-bp<e

y* and p* be optimal primal and dual solutions. Then,

cdy* < cy < cy* +e,
b'p* —¢ < b'p < b'p*

4.4.1 Proof
e cly* <cy
e By weak duality, b'p < ¢'y*

e Since c'y — b'p < ¢,
cdy<bp+e<cdy*+e

bp*=cy*<cdy<bp+e

yUm), then AY =
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5 Affine Scaling

5.1 Inputs
e (A b, c);
e an initial primal feasible solution ° > 0
e the optimality tolerance € > 0

e the parameter 3 € (0,1)

5.2 The Algorithm

1. (Initialization) Start with some feasible % > 0; let k = 0.

(Computation of dual estimates and reduced costs) Given some feasible
xk >0, let

X, = diag(zh, ... 2"),

Pt = (AX2A) ' AXe,
r* = c— A'pF.
3. (Optimality check) Let e = (1,1,...,1). If r* > 0 and €' X ;7" < ¢, then
stop; the current solution =¥ is primal e-optimal and p* is dual e-optimal.
4. (Unboundedness check) If —X2r* > 0 then stop; the optimal cost is —ooc.
5. (Update of primal solution) Let
X i?“k

k+1 k
T =z - f—F"—.
1 X k|

5.3 Variants
o ||ul|oo = max; |u;|, y(uw)=max{u; | u; >0}
e y(u) <|lulloo < [yl

e Short-step method.

e Long-step variants

X2pk
k+1 _ k k
x =z - f—"—
[ X k5 oo
k+1 _ _k Xirk
z T =P ok
V(X k)

SLIDE 13

SLIDE 14

SLIDE 15



6 Convergence

6.1 Assumptions

Assumptions A:

(a) The rows of the matrix A are linearly independent.

(b) The vector ¢ is not a linear combination of the rows of A.
(¢) There exists an optimal solution.

(d) There exists a positive feasible solution.

Assumptions B:

(a) Every BFS to the primal problem is nondegenerate.

(b) At every BFS to the primal problem, the reduced cost of every nonbasic
variable is nonzero.

6.2 Theorem

If we apply the long-step affine scaling algorithm with € = 0, the following hold:
(a) For the Long-step variant and under Assumptions A and B, and if 0 < 3 < 1,
2" and p" converge to the optimal primal and dual solutions
(b) For the second Long-step variant, and under Assumption A and if 0 < 8 <
2/3, the sequences z* and p® converge to some primal and dual optimal solutions,
respectively

7 Initialization

min cx + Mz

s.t. Az + (b— Ae)zpp1 = b
(m,znﬂ) >0

8 Example
max 1 + 219
s.t. xr1 + X2 S 2
—z1 + w2 <1
1,22 >0

9 Practical Performance

e Excellent practical performance, simple
e Major step: invert AX%A'

e Imitates the simplex method near the boundary
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