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1 Outline 
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•	 Problems with exponentially many constraints 

•	 The separation problem 

•	 Polynomial solvability 

•	 Examples: MST, TSP, Probability 

•	 Conclusions 

2 Problems 

2.1 Example 
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min cixi 

i 

aixi ≥ |S|, for all subsets S of {1, . . . , n} 
i∈S 

•	 There are 2n constraints, but are described concisely in terms of the n


scalar parameters a1, . . . , an


•	 Question: Suppose we apply the ellipsoid algorithm. Is it polynomial? 

•	 In what? 

2.2 The input 
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•	 Consider min c ′ x s.t. x ∈ P 

•	 P belongs to a family of polyhedra of special structure 

•	 A typical polyhedron is described by specifying the dimension n and an

integer vector h of primary data, of dimension O(nk), where k ≥ 1 is some

constant.


•	 In example, h = (a1, . . . , an) and k = 1 

•	 U0 be the largest entry of h 
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•	 Given n and h, P is described as Ax ≥ b 

•	 A has an arbitrary number of rows 

•	 U largest entry in A and b. We assume 

log U ≤ Cnℓ logℓ U0 
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3 The separation problem 
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Given a polyhedron P ⊂ ℜn and a vector x ∈ ℜn, the separation problem is 
to: 

•	 Either decide that x ∈ P , or 

•	 Find a vector d such that d ′ x < d ′ y for all y ∈ P 

What is the separation problem for 

aixi ≥ |S|, for all subsets S of {1, . . . , n}? 
i∈S 

4 Polynomial solvability 

4.1	 Theorem 
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If we can solve the separation problem (for a family of polyhedra) in time 
polynomial in n and log U , then we can also solve linear optimization problems 
in time polynomial in n and log U . If log U ≤ Cnℓ logℓ U0, then it is also 
polynomial in log U0 

•	 Proof ? 

•	 Converse is also true 

•	 Separation and optimization are polynomially equivalent 

4.2	 Minimum Spanning 
Tree (MST) 
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•	 How do telephone companies bill you? 

•	 It used to be that rate/minute: Boston → LA proportional to distance in

MST


•	 Other applications: Telecommunications, Transportation (good lower bound

for TSP)
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•	 Given a graph G = (V, E) undirected and Costs ce, e ∈ E. 

•	 Find a tree of minimum cost spanning all the nodes. 

1, if edge e is included in the tree 
•	 Decision variables xe = 

0, otherwise 
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•	 The tree should be connected. How can you model this requirement? 
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• Let S be a set of vertices. Then S and V \ S should be connected 

i ∈ S 
• Let δ(S) = {e = (i, j) ∈ E : 

j ∈ V \ S 

• Then, 
xe ≥ 1 

e∈δ(S) 

• What is the number of edges in a tree? 

• Then, xe = n − 1 
e∈E 

4.2.1 Formulation 
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IZMST = min cexe

e∈E


 

xe ≥ 1 �∀ S ⊆ V, S = ∅, V 
 

 

 e∈δ(S) 

H xe = n − 1 
 

 e∈E 
 

xe ∈ {0, 1}. 

How can you solve the LP relaxation? 

4.3	 The Traveling Salesman 
Problem 

Slide 11 
Given G = (V, E) an undirected graph. V = {1, . . . , n}, costs ce ∀ e ∈ E. Find 
a tour that minimizes total length. 

4.3.1 Formulation 
�	
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1, if edge e is included in the tour. 

xe = 
0, otherwise. 

min cexe

e∈E


s.t. xe ≥ 2, S ⊆ E 
e∈δ(S) 

xe = 2, i ∈ V 
e∈δ(i) 

xe ∈ {0, 1} 

How can you solve the LP relaxation? 
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4.4 Probability Theory 
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•	 Events A1, A2 

•	 P (A1) = 0.5, P (A2) = 0.7, P (A1 ∩ A2) ≤ 0.1 

•	 Are these beliefs consistent? 

•	 General problem: Given n events Ai i ∈ N = {1, . . . , n}, beliefs 

P(Ai) ≤ pi, i ∈ N, 

P(Ai ∩ Aj ) ≥ pij , i, j ∈ N, i < j. 

•	 Given the numbers pi and pij , which are between 0 and 1, are these beliefs

consistent?


4.4.1 Formulation 
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x(S) = P ∩i∈S Ai ∩ ∩i/ ,∈S Ai 

x(S) ≤ pi, i ∈ N, 
{S|i∈S} 

x(S) ≥ pij , i, j ∈ N, i < j, 
{S|i,j∈S} 

x(S) = 1, 
S 

x(S) ≥ 0, ∀ S. 
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The previous LP is feasible if and only if there does not exist a vector (u, y, z) such 
that 

yij + ui + z ≥ 0, ∀ S, 
i,j∈S,i<j i∈S 

pij yij + piui + z ≤ −1, 
i,j∈N,i<j i∈N 

yij ≤ 0, ui ≥ 0,	 i, j ∈ N, i < j. 
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Separation problem: 

∗	 ∗ ∗ z	 + min f(S) = yij + ui ≥ 0? 
S 

i,j∈S,i<j i∈S 

∗ ∗ ∗ ∗ ∗ ∗Example: y12 = −2, y13 = −4, y14 = −4, y23 = −4, y24 = −1, y34 = −7, 
u1 
∗ = 9, u2 

∗ = 6, u3 
∗ = 4, u4 

∗ = 2, and z ∗ = 2	 Slide 17 
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•	 The minimum cut corresponds to S0 = {3, 4} with value c(S0) = 21. 

•	 f(S0) = y ∗ u ∗ = −7 + 4 + 2 = −1ij + i


i,j∈S0 ,i<j i∈S0


•	 f(S) + z ∗ ≥ f(S0) + z ∗ = −1 + 2 = 1 > 0, ∀ S 

•	 Given solution (y ∗ , u ∗ , z ∗) is feasible 
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5 Conclusions 
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•	 Ellipsoid algorithm can characterize the complexity of solving LOPs with

an exponential number of constraints


•	 For practical purposes use dual simplex 

•	 Ellipsoid method is an important theoretical development, not a practical

one
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