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Lecture 18: The Ellipsoid method



1 Outline
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e Efficient algorithms and computational complexity
e The key geometric result behind the ellipsoid method
e The ellipsoid method for the feasibility problem
e The ellipsoid method for optimization
2 Efficient algorithms
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e The LO problem
min c'z
st. Az =05
x>0
e A LO instance
min 2z + 3y
st. x+ y <1
z , y=>0
e A problem is a collection of instances
2.1 Size
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e The size of an instance is the number of bits used to describe the instance,
according to a prespecified format
e A number r < U
r=a2® + a2+ a2t + a0
is represented by (ao, a1, ...,axr) with k < [log, U]
e Size of ris |log, U| + 2
e Instance of LO: (¢, A, b)
e Size is
(mn+m+n)([10g2 Ul + 2)
2.2 Running Time
SLIDE 4
Let A be an algorithm which solves the optimization problem II.
If there exists a constant a > 0 such that A terminates its computation after at most
o f(I) elementary steps for each instance I, then A runs in O(f) time.
Elementary operations are
e variable assignments e comparison of numbers
e random access to variables e arithmetic operations
e conditional jumps e ... SLIDE 5



A “brute force” algorithm for solving the min-cost flow problem:

Consider all spanning trees and pick the best tree solution among the feasible ones.

Suppose we had a computer to check 10'® trees in a second. It would need more than
10° years to find the best tree for a 25-node min-cost flow problem.
It would need 10%° years for a 50-node instance.

That’s not efficient!
Ideally, we would like to call an algorithm “efficient” when it is sufficiently fast to be
usable in practice, but this is a rather vague and slippery notion.
The following notion has gained wide acceptance:

An algorithm is considered efficient if the number of steps it performs for
any input is bounded by a polynomial function of the input size.

Polynomials are, e.g., n, n®, or 10°n8.

2.3 The Tyranny of
Exponential Growth

|| || 100 nlogn | 10n? n>s | Al | n! | n 2 ||
10° /sec 1.19-10° 600,000 | 3,868 | 41 [ 15 | 13
10" /sec || 1.08-10™ | 1,897,370 | 7,468 | 45 | 16 | 13

Maximum input sizes solvable within one hour.

2.4 Punch line

The equation
efficient = polynomial

has been accepted as the best available way of tying the empirical
notion of a “practical algorithm” to a precisely formalized mathe-
matical concept.

2.5 Definition

An algorithm runs in polynomial time if its running time is O(|I|¥), where |I|
is the input size, and all numbers in intermediate computations can be stored
with O(|I]¥) bits.

3 The Ellipsoid method

e D is an n X n positive definite symmetric matrix

e A set E of vectors in R™ of the form
E=E(z,D)={zeR"|(x—2)D (z—2) <1}

is called an ellipsoid with center z € R"
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3.1 The algorithm intuitively
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e Problem: Decide whether a given polyhedron
P={xzeR"|Azx > b}
is nonempty SLIDE 12
a'xr>ax
e Key property: We can find a new ellipsoid Fyy1 that covers the half-
ellipsoid and whose volume is only a fraction of the volume of the previous
ellipsoid FE}
3.2 Key Theorem
SLIDE 13

e E = E(z,D) be an ellipsoid in R"; a nonzero n-vector.

H={xeR"|dz>adz}

— n Da
zZ = =z —_—,
n+1+va'Da
2 /
= n 2 Daa'D
D = D — .
n21( n+1 a’Da)
e The matrix D is symmetric and positive definite and thus E' = E(%z, D) is an
ellipsoid
e ENHCE

Vol(E') < e~V 2+1) vol(E)



3.3
3.4

3.5

Illustration
Assumptions
A polyhedron P is full-dimensional if it has positive volume

The polyhedron P is bounded: there exists a ball Ey = E(xg,r2I), with
volume V', that contains P

Either P is empty, or P has positive volume, i.e., Vol(P) > v for some
v >0

Ey, v, V, are a priori known

We can make our calculations in infinite precision; square roots can be
computed exactly in unit time

Input-Output

Input:

A matrix A and a vector b that define the polyhedron P = {x € R" |
aix >b;, i=1,...,m}

A number v, such that either P is empty or Vol(P) > v
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e A ball Ey = E(xg,7?I) with volume at most V, such that P C Ey

Output: A feasible point «* € P if P is nonempty, or a statement that P is
empty

3.6 The algorithm
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1. (Initialization)
Let t* = [Q(n +1) log(V/v)-I; Eo = E(zo,7I); Do = r*I; t = 0.
2. (Main iteration)
e If t =" stop; P is empty.
e If x; € P stop; P is nonempty.
e If z;, ¢ P find a violated constraint, that is, find an ¢ such that a,ry < b;.
o Let H; = {x € R" | a;z > a)x:}. Find an ellipsoid E:yi containing E; N Hy:
Et+1 = E(wt+17 Dt+1) with
T s+ 1 Dta¢
t4l = T+ —— —F——,
n+1./a'Da;
2 /
n 2 Dtaia~Dt
D = D, — @i )
+l n21< ¢ n+1 a,D:a; >
o t:=t+ 1.
3.7 Correctness
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Theorem: Let P be a bounded polyhedron that is either empty or full-dimensional
and for which the prior information xg, r, v, V is available. Then, the ellipsoid
method decides correctly whether P is nonempty or not, i.e., if @41 ¢ P, then
P is empty

. Proof
3.8 00 SLIDE 19
o If &, € P for t < t*, then the algorithm correctly decides that P is
nonempty
e Suppose X, ..., &1 ¢ P. We will show that P is empty.
e We prove by induction on k that P C FEy for k = 0,1,...,t". Note
that P C Ey, by the assumptions of the algorithm, and this starts the
induction.
SLIDE 20

e Suppose P C Ej, for some k < t*. Since x ¢ P, there exists a violated
inequality: a;(k)w > b be a violated inequality, i.e., a;(k)mk < bi(k),
where xj, is the center of the ellipsoid Ej



e For any « € P, we have
@)@ = bi() > @y
e Hence, P C Hj, = {x € R" | a;(k)"‘lB = a;(k)wk}

e Therefore, P C E) N Hy,

By key geometric property, Ex N Hy C Ejy1; hence P C Ej41 and the induction is
complete

Vol(Ei11) < ¢~ V/2(n+D)
VOl(Et)

Vol(E;+) ot/ 2+ 1)
VOl(Eo)

Vol(Ey=) < Ve [2nH1)les THEEAD) < yemlosy _y,
If the ellipsoid method has not terminated after t* iterations, then Vol(P) < Vol(E¢«) <

v. This implies that P is empty

3.9 Binary Search
e P={zeR|z>0,z>1,z<2z<3}
e Fy=0,5], centered at z¢g = 2.5

e Since zp ¢ P, the algorithm chooses the violated inequality < 2 and
constructs E that contains the interval Ey N {z |z < 2.5} = [0, 2.5]

e The ellipsoid E; is the interval [0, 2.5] itself
e Its center 1 = 1.25 belongs to P

e This is binary search

3.10 Boundedness of P

Let A be an m x n integer matrix and let b a vector in ". Let U be the largest
absolute value of the entries in A and b.
Every extreme point of the polyhedron P = {x € R" | Ax > b} satisfies

~(U)" <z < (U),  j=1,....n

e All extreme points of P are contained in

Pg={xeP ||z <(nU)", j=1,...,n}

e Since Pg C E(O, n(nU)Q”I), we can start the ellipsoid method with Fy =
E(0,n(nU)*"I)

Vol(Eo) <V = (2n(nU)")" = (2n)" (nU)"
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3.11 Full-dimensionality

Let P = {z € R" | Az > b}. We assume that A and b have integer entries,
which are bounded in absolute value by U. Let

L —(n+1)
= 1 U .
= (DY)
Let
PE:{mG%”|Aa:2bfee},
where e = (1,1,...,1).
(a) If P is empty, then P. is empty.
(b) If P is nonempty, then P, is full-dimensional.
Let P = {m ER"| Ax > b} be a full-dimensional bounded polyhedron, where
the entries of A and b are integer and have absolute value bounded by U. Then,

Vol(P) > v = nfn(nU)fnz(THl)

3.12 Complexity

e P={x c R"| Az > b}, where A, b have integer entries with magni-
tude bounded by some U and has full rank. If P is bounded and either
empty or full-dimensional, the ellipsoid method decides if P is empty in
O(nlog(V/v)) iterations

o V= n_"(nU)_"z("'H), V= (2”)n(nU)n2
e Number of iterations O(n*log(nU))

e If P is arbitrary, we first form Pg, then perturb Pp to form Pg,. and apply the
ellipsoid method to Pg,c

e Number of iterations is O(n6 log(nU)).

e Tt has been shown that only O(n®logU) binary digits of precision are needed,
and the numbers computed during the algorithm have polynomially bounded
size

e The linear programming feasibility problem with integer data can be solved in
polynomial time

4 The ellipsoid method for optimization

min c=z max b'w
st. Ax > b, st. A'm = ¢
w >0

By strong duality, both problems have optimal solutions if and only if the following
system of linear inequalities is feasible:

b/p = C/LI:7 Ax > b7 A/p =c, P > 0.

LO with integer data can be solved in polynomial time.
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4.1

4.2

Sliding objective

We first run the ellipsoid method to find a feasible solution &y € P =
{:BE%”|A:BZb}.

We apply the ellipsoid method to decide whether the set
Pn{zeR"|dx <z}

is empty.

If it is empty, then x( is optimal. If it is nonempty, we find a new solution

1 in P with objective function value strictly smaller than ¢'xg.

More generally, every time a better feasible solution @, is found, we take
Pn{x e RN | dx < dxt} as the new set of inequalities and reapply the
ellipsoid method.

Xi+1 Cx <eXp

Performance in practice
Very slow convergence, close to the worst case
Contrast with simplex method

The ellipsoid method is a tool for classifying the complexity of linear
programming problems
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