
15.081J/6.251J Introduction to Mathematical
Programming

Lecture 18: The Ellipsoid method

� �

1 Outline
Slide 1

•	 Efficient algorithms and computational complexity

•	 The key geometric result behind the ellipsoid method

•	 The ellipsoid method for the feasibility problem

•	 The ellipsoid method for optimization

2 Efficient algorithms
Slide 2

•	 The LO problem
′min c x

s.t. Ax = b

x ≥ 0

•	 A LO instance

min 2x + 3y

s.t. x + y ≤ 1

x , y ≥ 0

•	 A problem is a collection of instances

2.1 Size
Slide 3

•	 The size of an instance is the number of bits used to describe the instance,

according to a prespecified format

•	 A number r ≤ U

r = ak2k + ak−12
k−1 + + a12

1 + a0· · ·

is represented by (a0, a1, . . . , ak) with k ≤ ⌊log2 U⌋

•	 Size of r is ⌊log2 U⌋ + 2

•	 Instance of LO: (c, A, b)

Size is •
(mn + m + n) ⌊log2 U⌋ + 2

2.2 Running Time
Slide 4

Let A be an algorithm which solves the optimization problem Π.

If there exists a constant α > 0 such that A terminates its computation after at most

α f(I) elementary steps for each instance I , then A runs in O(f) time.

Elementary operations are
•	 variable assignments • comparison of numbers

•	 random access to variables • arithmetic operations

•	 conditional jumps • . . . Slide 5

1

A “brute force” algorithm for solving the min-cost flow problem:

Consider all spanning trees and pick the best tree solution among the feasible ones.

Suppose we had a computer to check 1015 trees in a second. It would need more than
109 years to find the best tree for a 25-node min-cost flow problem.
It would need 1059 years for a 50-node instance.

That’s not efficient!

Ideally, we would like to call an algorithm “efficient” when it is sufficiently fast to be
usable in practice, but this is a rather vague and slippery notion.

Slide 6

The following notion has gained wide acceptance:

An algorithm is considered efficient if the number of steps it performs for
any input is bounded by a polynomial function of the input size.

Polynomials are, e.g., n, n 3, or 106 n 8 .

2.3 The Tyranny of

Exponential Growth
Slide 7

100 n log n 10 n 2 n 3.5 2n n! n n−2

109/sec 1.19 109 600, 000 3, 868 41 15 13 ·
1010 /sec 1.08 1010 1, 897, 370 7, 468 45 16 13 ·

Maximum input sizes solvable within one hour.

2.4 Punch line
Slide 8

The equation

efficient = polynomial

has been accepted as the best available way of tying the empirical

notion of a “practical algorithm” to a precisely formalized mathe­

matical concept.

2.5 Definition
Slide 9

An algorithm runs in polynomial time if its running time is O(|I|k), where |I|
is the input size, and all numbers in intermediate computations can be stored
with O(|I|k) bits.

3 The Ellipsoid method
Slide 10

• D is an n × n positive definite symmetric matrix

• A set E of vectors in ℜn of the form

E = E(z, D) =
�

x ∈ ℜn | (x − z) ′ D−1(x − z) ≤ 1
�

is called an ellipsoid with center z ∈ ℜn

2

�	 �

�	 �

3.1 The algorithm intuitively

•	 Problem: Decide whether a given polyhedron

P = x ∈ ℜn | Ax ≥ b

is nonempty

′ ′ a x ≥ a xt

0011 0011

Et+1

Et

xt
xt+1

P

a x ≥ b′

•	 Key property: We can find a new ellipsoid Et+1 that covers the half­
ellipsoid and whose volume is only a fraction of the volume of the previous
ellipsoid Et

3.2 Key Theorem

•	 E = E(z, D) be an ellipsoid in ℜ n; a nonzero n-vector.

•	 H = {x ∈ ℜ n | a ′ x ≥ a ′ z}

1 Da
z = z + ,

n + 1
√

a ′ Da

n 2 2 Daa ′ D
D =	 .

n2 − 1
D −

n + 1 a ′ Da

′ •	 The matrix D is symmetric and positive definite and thus E = E(z, D) is an
ellipsoid

′ • E ∩ H ⊂ E

Vol(E ′) < e −1/(2(n+1)) Vol(E)
•

3

Slide 11

Slide 12

Slide 13

x2

x1

E

E'

3.3 Illustration
Slide 14

3.4 Assumptions
Slide 15

•	 A polyhedron P is full-dimensional if it has positive volume

•	 The polyhedron P is bounded: there exists a ball E0 = E(x0, r
2I), with

volume V , that contains P

•	 Either P is empty, or P has positive volume, i.e., Vol(P) > v for some

v > 0

•	 E0, v, V , are a priori known

•	 We can make our calculations in infinite precision; square roots can be

computed exactly in unit time

3.5 Input-Output
Slide 16

Input:

•	 A matrix A and a vector b that define the polyhedron P = {x ∈ ℜn |
′ aix ≥ bi, i = 1, . . . , m}

•	 A number v, such that either P is empty or Vol(P) > v

4

� �

�	 �

•	 A ball E0 = E(x0, r
2I) with volume at most V , such that P ⊂ E0

Output: A feasible point x ∗ ∈ P if P is nonempty, or a statement that P is
empty

3.6 The algorithm
Slide 17

1. (Initialization)
Let t ∗ = 2(n + 1) log(V/v) ; E0 = E(x0, r

2I); D0 = r 2I; t = 0.

2. (Main iteration)
∗ •	 If t = t stop; P is empty.

•	 If xt ∈ P stop; P is nonempty.
′ •	 If xt ∈/ P find a violated constraint, that is, find an i such that aixt < bi.

•	 Let Ht = {x ∈ ℜ n | ai
′ x ≥ ai

′ xt}. Find an ellipsoid Et+1 containing Et ∩ Ht:

Et+1 = E(xt+1, Dt+1) with

1 Dtai
xt+1 = xt + � ,

n + 1 a ′ Dtaii

n 2 2 Dtaiai
′ Dt

Dt+1 =
n2 − 1

Dt −
n + 1 a ′ iDtai

.

t := t + 1. •

3.7 Correctness
Slide 18

Theorem: Let P be a bounded polyhedron that is either empty or full-dimensional
and for which the prior information x0, r, v, V is available. Then, the ellipsoid
method decides correctly whether P is nonempty or not, i.e., if xt∗−1 ∈/ P , then
P is empty

3.8 Proof
Slide 19

•	 If xt ∈ P for t < t ∗, then the algorithm correctly decides that P is

nonempty

•	 Suppose x0, . . . , xt∗−1 ∈/ P . We will show that P is empty.

•	 We prove by induction on k that P ⊂ Ek for k = 0, 1, . . . , t ∗ . Note

that P ⊂ E0, by the assumptions of the algorithm, and this starts the

induction.

Slide 20

•	 Suppose P ⊂ Ek for some k < t∗ . Since xk ∈/ P , there exists a violated
′	 ′ inequality: ai(k)x ≥ bi(k) be a violated inequality, i.e., ai(k)xk < bi(k),

where xk is the center of the ellipsoid Ek

5

�	 �

�	 �

�	 �
�

�

� �

� �

•	 For any x ∈ P , we have

′ ′ ai(k)x ≥ bi(k) > ai(k)xk

•	 Hence, P ⊂ Hk = x ∈ ℜn | a ′ i(k)x ≥ a ′ i(k)xk

•	 Therefore, P ⊂ Ek ∩ Hk
Slide 21

By key geometric property, Ek ∩ Hk ⊂ Ek+1; hence P ⊂ Ek+1 and the induction is
complete

Vol(Et+1) −1/(2(n+1)) < e
Vol(Et)

Vol(Et∗) −t ∗/(2(n+1)) < e
Vol(E0)

Vol(Et∗) < V e −⌈2(n+1) log V ⌉/(2(n+1)) ≤ V e − log V
= vv	 v

∗ If the ellipsoid method has not terminated after t iterations, then Vol(P) ≤ Vol(Et∗) ≤
v. This implies that P is empty

3.9 Binary Search
Slide 22

•	 P = x ∈ ℜ | x ≥ 0, x ≥ 1, x ≤ 2, x ≤ 3

•	 E0 = [0, 5], centered at x0 = 2.5

•	 Since x0 ∈/ P , the algorithm chooses the violated inequality x ≤ 2 and

constructs E1 that contains the interval E0 ∩ {x | x ≤ 2.5} = [0, 2.5]

•	 The ellipsoid E1 is the interval [0, 2.5] itself

•	 Its center x1 = 1.25 belongs to P

•	 This is binary search

3.10 Boundedness of P
Slide 23

Let A be an m×n integer matrix and let b a vector in ℜn . Let U be the largest
absolute value of the entries in A and b.
Every extreme point of the polyhedron P = {x ∈ ℜn | Ax ≥ b} satisfies

−(nU)n ≤ xj ≤ (nU)n , j = 1, . . . , n

Slide 24

•	 All extreme points of P are contained in

PB = x ∈ P |xj | ≤ (nU)n, j = 1, . . . , n

•	 Since PB ⊆ E 0, n(nU)2nI , we can start the ellipsoid method with E0 =

E	 0, n(nU)2nI

•
� �n 2

V ol(E0) ≤ V = 2n(nU)n = (2n)n(nU)n

6

�	 �

�	 �

� �

� �

� �

3.11 Full-dimensionality
Slide 25

Let P = {x ∈ ℜn | Ax ≥ b}. We assume that A and b have integer entries,
which are bounded in absolute value by U . Let

1 � �

−(n+1)
ǫ = (n + 1)U .

2(n + 1)

Let
Pǫ = x ∈ ℜn | Ax ≥ b − ǫe ,

where e = (1, 1, . . . , 1).

(a) If P is empty, then Pǫ is empty.

(b) If P is nonempty, then Pǫ is full-dimensional.	 Slide 26
Let P = x ∈ ℜn | Ax ≥ b be a full-dimensional bounded polyhedron, where
the entries of A and b are integer and have absolute value bounded by U . Then,

2

Vol(P) > v = n −n(nU)−n (n+1)

3.12 Complexity
Slide 27

•	 P = {x ∈ ℜn | Ax ≥ b}, where A, b have integer entries with magni­

tude bounded by some U and has full rank. If P is bounded and either

empty or full-dimensional, the ellipsoid method decides if P is empty in

O	 n log(V/v) iterations

•	 v = n−n(nU)−n 2 (n+1), V = (2n)n(nU)n 2

•	 Number of iterations O n4 log(nU)
Slide 28

•	 If P is arbitrary, we first form PB , then perturb PB to form PB,ǫ and apply the

ellipsoid method to PB,ǫ

Number of iterations is O n 6 log(nU) .•
•	 It has been shown that only O(n 3 log U) binary digits of precision are needed,

and the numbers computed during the algorithm have polynomially bounded

size

•	 The linear programming feasibility problem with integer data can be solved in

polynomial time

4 The ellipsoid method for optimization
Slide 29

min c ′ x	 max b ′ π

s.t. Ax ≥ b, s.t. A ′ π = c

π	 ≥ 0.

By strong duality, both problems have optimal solutions if and only if the following
system of linear inequalities is feasible:

′ ′	 ′
b p = c x, Ax ≥ b, A p = c, p ≥ 0.

LO with integer data can be solved in polynomial time.

7

�	 �

�	 �

4.1 Sliding objective
Slide 30

•	 We first run the ellipsoid method to find a feasible solution x0 ∈ P =
x ∈ ℜn | Ax ≥ b .

•	 We apply the ellipsoid method to decide whether the set

P ∩ x ∈ ℜn | c ′ x < c ′ x0

is empty.

•	 If it is empty, then x0 is optimal. If it is nonempty, we find a new solution
′ x1 in P with objective function value strictly smaller than c x0.

Slide 31

•	 More generally, every time a better feasible solution xt is found, we take

P ∩ {x ∈ ℜn | c ′ x < c ′ xt} as the new set of inequalities and reapply the

ellipsoid method.

.

. xt+1

xt

P

c' x <c ' xt+1

c' x <c ' xt

- c

4.2 Performance in practice
Slide 32

•	 Very slow convergence, close to the worst case

•	 Contrast with simplex method

•	 The ellipsoid method is a tool for classifying the complexity of linear

programming problems

8

MIT OpenCourseWare
http://ocw.mit.edu

6.251J / 15.081J Introduction to Mathematical Programming
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

