15.081J/6.251J Introduction to Mathematical Programming

Lecture 11: Duality Theory IV

1 Outline

SLIDE 1

- Overview and objectives
- Weistrass Theorem
- Separating hyperplanes theorem
- Farkas lemma revisited
- Duality theorem revisited

2 Overview and objectives

SLIDE 2

- $\bullet\,$ So far: Simplex \longrightarrow Duality \longrightarrow Farkas lemma
- Disadvantages: specialized to LP, relied on a particular algorithm
- \bullet Plan today: Separation (A Geometric property) \longrightarrow Farkas lemma \longrightarrow Duality
- Purely geometric, generalizes to general nonlinear problems, more fundamental

3 Closed sets

SLIDE 3

- A set $S \subset \mathbb{R}^n$ is closed if x^1, x^2, \ldots is a sequence of elements of S that converges to some $x \in \mathbb{R}^n$, then $x \in S$.
- Every polyhedron is closed.

4 Weierstrass' theorem

SLIDE 4

If $f: \Re^n \mapsto \Re$ is a continuous function, and if S is a nonempty, closed, and bounded subset of \Re^n , then there exists some $x^* \in S$ such that $f(x^*) \leq f(x)$ for all $x \in S$. Similarly, there exists some $y^* \in S$ such that $f(y^*) \geq f(x)$ for all $x \in S$.

Note: Weierstrass' theorem is not valid if the set S is not closed. Consider, $S=\{x\in\Re\mid x>0\},\,f(x)=x$

5 Separation

SLIDE 5

Theorem: Let S be a nonempty closed convex subset of \Re^n and let $x^* \in \Re^n$: $x^* \notin S$. Then, there exists some vector $\mathbf{c} \in \Re^n$ such that $\mathbf{c}'x^* < \mathbf{c}'x$ for all $\mathbf{x} \in S$.

5.1 Proof

SLIDE 6

- Fix $w \in S$
- $B = \{x \mid ||x x^*|| \le ||w x^*||\},$
- $\bullet \ D = S \cap B$
- $D \neq \emptyset$, closed and bounded. Why?
- Consider min $||x x^*||$

SLIDE 7 SLIDE 8

 \bullet By Weierstrass' theorem there exists some $\boldsymbol{y} \in D$ such that

$$||\boldsymbol{y} - \boldsymbol{x}^*|| \le ||\boldsymbol{x} - \boldsymbol{x}^*||, \qquad \forall \ \boldsymbol{x} \in D.$$

- $\forall x \in S \text{ and } x \notin D, ||x x^*|| > ||w x^*|| \ge ||y x^*||.$
- y minimizes $||x x^*|| \forall x \in S$.
- Let $c = y x^*$

- $x \in S$. $\forall \lambda$ satisfying $0 < \lambda \le 1$, $y + \lambda(x y) \in S$ (S convex)
- $\begin{aligned} \bullet & ||y x^*||^2 \le ||y + \lambda(x y) x^*||^2 \\ &= ||y x^*||^2 + 2\lambda(y x^*)'(x y) + \lambda^2||x y||^2 \end{aligned}$
- $2\lambda (y x^*)'(x y) + \lambda^2 ||x y||^2 \ge 0.$
- Divide by λ , $(y x^*)'(x y) \ge 0$, i.e.,

$$egin{aligned} (y-x^*)'x & \geq (y-x^*)'y \ & = (y-x^*)'x^* + (y-x^*)'(y-x^*) \ & > (y-x^*)'x^*. \end{aligned}$$

• $c = y - x^*$ proves theorem

6 Farkas' lemma

SLIDE 10

Theorem: If Ax = b, $x \ge 0$ is infeasible, then there exists a vector p such that $p'A \ge 0'$ and p'b < 0.

- $S = \{y \mid \text{there exists } x \text{ such that } y = Ax, x \ge 0 \} b \notin S.$
- S is convex; nonempty; closed; S is the projection of $\{(x, y) \mid y = Ax, x \geq 0\}$ onto the y coordinates, is itself a polyhedron and is therefore closed.
- $b \notin S$: $\exists p$ such that p'b < p'y for every $y \in S$.
- Since $0 \in S$, we must have p'b < 0.
- $\forall A_i \text{ and } \forall \lambda > 0, \lambda A_i \in S \text{ and } p'b < \lambda p'A_i$
- Divide by λ and then take limit as λ tends to infinity: $p'A_i \ge 0 \Rightarrow p'A \ge 0'$

7 Duality theorem

SLIDE 11

$$egin{array}{lll} \min & c'x & \max & p'b \ \mathrm{s.t.} & Ax \geq b & \mathrm{s.t.} & p'A = c' \ & p \geq 0 & \end{array}$$

and we assume that the primal has an optimal solution x^* . We will show that the dual problem also has a feasible solution with the same cost. Strong duality follows then from weak duality.

SLIDE 12

- $I = \{i \mid a_i' x^* = b_i\}$
- We next show: if $a'_i d \ge 0$ for every $i \in I$, then $c' d \ge 0$

- $a'_i(x^* + \epsilon d) \ge a_i x^* = b_i$ for all $i \in I$.
- If $i \notin I$, $a'_i x^* > b_i$ hence $a'_i (x^* + \epsilon d) > b_i$.
- $x^* + \epsilon d$ is feasible

SLIDE 13

- By optimality x^* , $c'd \ge 0$
- By Farkas' lemma

$$c = \sum_{i \in I} p_i a_i.$$

• For $i \notin I$, we define $p_i = 0$, so $\mathbf{p}' \mathbf{A} = \mathbf{c}'$.

•

$$p'b = \sum_{i \in I} p_i b_i = \sum_{i \in I} p_i a_i' x^* = c' x^*,$$

MΙ	Т	Oı	pen	Со	urs	e۷	Vare	Э
htt	p:/	//c	cw.	.mit	.ec	ut		

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.