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Lecture 11: Duality Theory IV



1 Outline

SLIDE 1
e Overview and objectives
e Weistrass Theorem
e Separating hyperplanes theorem
e Farkas lemma revisited
e Duality theorem revisited
2 Overview and objectives
SLIDE 2
e So far: Simplex — Duality — Farkas lemma
e Disadvantages: specialized to LP, relied on a particular algorithm
e Plan today: Separation (A Geometric property) — Farkas lemma —
Duality
e Purely geometric, generalizes to general nonlinear problems, more funda-
mental
3 Closed sets
SLIDE 3
e A set S C R"is closed if !, 22, ... is a sequence of elements of S that
converges to some x € R, then x € §.
e Every polyhedron is closed.
4 Weierstrass’ theorem
SLIDE 4
If f:R"+— R is a continuous function, and if S is a nonempty, closed, and
bounded subset of ", then there exists some x* € S such that f(x*) < f(x)
for all @ € S. Similarly, there exists some y* € S such that f(y*) > f(x) for
allxz € S.
Note: Weierstrass’ theorem is not valid if the set S is not closed. Consider,
S={zeR|x>0}, f(x)=x
5 Separation
SLIDE 5

Theorem: Let S be a nonempty closed convex subset of R and let x* € R™:
x* ¢ S. Then, there exists some vector ¢ € R" such that dx* < 'z for all
resS.



5.1 Proof SLIDE 6

e Fixwe S

e B={a| oo’ < flw -]},

e D=SNB

e D # 0, closed and bounded. Why?

e Consider min ||z — z*||
SLIDE 7
SLIDE 8

By Weierstrass’ theorem there exists some y € D such that

ly —a*|| <[lz —="[], VxzeD.

Ve e Sand x ¢ D, ||z —x*|| > ||lw —x*|| > ||y — =*|]

y minimizes ||z — x*|| V& € S.

Let c=y —x*



=|ly —z"|> +2\(y — =) (z — y) + \*||z — y|

(y—z")z

e ¢ =y — x" proves theorem

6 Farkas’ lemma

Theorem: If Ax = b, x > 0 is infeasible, then there exists a vector p such that

p’A >0 and p'b < 0.

o S = {y ‘ there exists @ such that y = Az, x > O} b¢s.

2

2Ny — ") (& —y) + N[l —y|* > 0.
Divide by A, (y — x*) (z —y) >0, i.e.,

(y —=
(y —=x
(y —=x

e S is convex; nonempty; closed;

S is the projection of {(x,vy) | y = Az, « > 0} onto the y coordinates,

is itself a polyhedron and is therefore closed.

Since 0 € S, we must have p'b < 0.

b ¢ S: Ip such that p'b < p'y for every y € S.

e VA, and VA > 0, AA; € S and p'b < \p' A;

0/

7 Duality theorem

min c'x
st. Ax>0b

and we assume that the primal has an optimal solution *. We will show that
the dual problem also has a feasible solution with the same cost. Strong duality

follows then from weak duality.

o [ ={i|ajx* =b;}

max
s.t.

x € S. VAsatisfying 0 < A< 1, y+ Az —y) €S (S convex)
lly —2*[|* < |ly + ANz —y) —z"|]

p'b
p/A:c/
p>0

e We next show: if ad > 0 for every i € I, then ¢'d > 0

2

Divide by A and then take limit as A tends to infinity: p’A; > 0= p'A >

SLIDE 9

SLIDE 10

SLIDE 11
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ai(x* +ed) > a;x* =b; foralli € I.
If i ¢ I, ajx* > b; hence al(x* + ed) > b;.

x* + ed is feasible

By optimality «*, ¢/d > 0

By Farkas’ lemma

c= Zpia,-.

icl
For i ¢ I, we define p; =0, so p’A = ¢.

p'b= Zpibi = Zpiaiw* =cda*,

icl icl

SLIDE 13
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