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2 Farkas lemma

Theorem:
Exactly one of the following two alternatives hold:

1. Jx > 0s.t. Ax =b.

2. dps.t. pPA >0 and p'b < 0.

2.1 Proof

“='"1f 3x > 0s.t. Ax = b, and if p’A > 0', then p'b = p’Ax > 0
“ <" Assume thereisnox > 0s.t. Ax =b

(P)max 0’z (D) min p’b
st. Axz = b st. p’A>0
x>0

(P) infeasible = (D) either unbounded or infeasible
Since p = 0 is feasible = (D) unbounded
=3dp: p’A>0 and p’b< 0
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3

Asset Pricing

n different assets
m possible states of nature

one dollar invested in some asset i, and state of nature is s, we receive a
payoff of rg;

m X n payoff matrix:

T11 . T1n
R =
T'm1 oo Tmn
x;: amount held of asset i. A portfolio of assets is © = (,7:1, . ,xn).

A negative value of z; indicates a “short” position in asset ¢: this amounts
to selling |x;| units of asset 7 at the beginning of the period, with a promise
to buy them back at the end. Hence, one must pay out rg;|z;| if state s
occurs, which is the same as receiving a payoff of rg;x;

Wealth in state s from a portfolio @
n
Wg = Z Tsii.
i=1

w:(wl,...,wm),w:Rm

p;: price of asset 7, p = (pl, e ,pn)

Cost of acquiring x is p’x.

Arbitrage
Central problem: Determine p;

Absence of arbitrage: no investor can get a guaranteed nonnegative
payoff out of a negative investment. In other words, any portfolio that pays
off nonnegative amounts in every state of nature, must have nonnegative
cost.

if Rx >0, then p’z > 0.
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e Theorem: The absence of arbitrage condition holds if and only if there
exists a nonnegative vector ¢ = (qi, ..., ¢m), such that the price of each

asset 7 is given by
m
pi = Z qsTsi-
s=1
e Applications to options pricing

4 Cones and extreme rays

4.1 Definitions

e Aset CCcR'"isaconeif \ze € Cforall A >0andall z € C
e A polyhedron of the form P = {& € R" | Az > 0} is called a polyhedral

cone

4.2 Applications
P={xeR"| Az >b},ycP

The recession cone at y

RO={deR"|y+AdePV¥A>0}

e It turns out that
RCz{dE%ﬂAdZO}

RC independent of y

4.3 Extreme rays

A x # 0 of a polyhedral cone C' C R" is called an extreme ray if there are
n — 1 linearly independent constraints that are active at x

4.4 Unbounded LPs

Theorem: Consider the problem of minimizing ¢’ over a polyhedral cone C' =
{z eR" | Alz >0, i = 1,...,m} that has zero as an extreme point. The
optimal cost is equal to —oo if and only if some extreme ray d of C satisfies
c’d < 0. Theorem: Consider the problem of minimizing ¢’@ subject to Az > b,
and assume that the feasible set has at least one extreme point. The optimal
cost is equal to —oo if and only if some extreme ray d of the feasible set satisfies
cdd<0.

What happens when the simplex method detects an unbounded problem?

SLIDE 9

SLIDE 10

SLIDE 11

SLIDE 12

SLIDE 13

SLIDE 14



N}

Vi
&
-~

% =0
afz"
Al'l
(a) (b)



recession
cone

x?\ 2 x4

5 Resolution Theorem
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P={xecR"| Az > b}
be a nonempty polyhedron with at least one extreme point. Let x',...,z* be
the extreme points, and let w', ..., w" be a complete set of extreme rays of P.
k T k
Q= {ZAiw'+Zajw~7’ ‘ Ai>0,0;,>0, 3 A= 1}.
i=1 j=1 i=1
Then, Q = P.
5.1 Example
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T, — T2 Z —2
T +10 > 1
x1,x2 > 0
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e Extreme points: ! = (0,2), % = (0,1), and x* = (1,0).

e Extreme rays w! = (1,1) and w? = (1,0).



5.2 Proof
e QCP. Let x € Q:

k
i=1 j=1

A, 0; >0 N =1.
o y= Zle Az’ € P and satisfies Ay > b.
o Aw’ >0 for every j: z =7, 0w’ satisfies Az > 0.
e x =y + z satisfies Ax > b and belongs to P.

For the reverse, assume there is a z € P, such that z ¢ Q.

k T
max ZOAZ + Z 0(9j
i=1 j=1
k T
s.t. Z)\iwi + Zﬂjwj =z
i=1 =1

k

ZAZ:1

=1

AZ>O7 1 I 7k7
9J>07 .]: ) s Ty
Is this feasible?
e Dual
min p'z+g¢q
st. p'zi4+q>0, i=1,...,k,
pw’ >0, j=1,...,m

e This is unbounded. Why?
e There exists a feasible solution (p, ) whose cost p'z + ¢ < 0

e p'z < p'x’ for all i and p'w’ > 0 for all j.

min p'x
st. Ax >b.

o If the optimal cost is finite, there exists an extreme point z’ which is
optimal. Since z is a feasible solution, we obtain p’xz* < p’z, which is a
contradiction.

o If the optimal cost is —oo, there exists an extreme ray w’ such that
p'w’ < 0, which is again a contradiction

SLIDE 18

SLIDE 19

SLIDE 20

SLIDE 21



MIT OpenCourseWare
http://ocw.mit.edu

6.251J / 15.081J Introduction to Mathematical Programming
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu/terms
http://ocw.mit.edu

