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• Farkas lemma 

• Asset pricing 

• Cones and extreme rays 

• Representation of Polyhedra 

2 Farkas lemma 
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Theorem:

Exactly one of the following two alternatives hold:


1. ∃x ≥ 0 s.t. Ax = b. 

2. ∃p s.t. p ′ A ≥ 0 ′ and p ′ b < 0. 

2.1 Proof 
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′′
“ ⇒ If ∃x ≥ 0 s.t. Ax = b, and if p ′ A ≥ 0 ′ , then p ′ b = p ′ Ax ≥ 0 
′′
“ ⇐ Assume there is no x ≥ 0 s.t. Ax = b 

(P )max 0 ′ x (D) min p ′ b 
s.t. Ax = b s.t. p ′ A ≥ 0 ′ 

x ≥ 0 

(P) infeasible ⇒ (D) either unbounded or infeasible 
Since p = 0 is feasible ⇒ (D) unbounded 
⇒ ∃p : p ′ A ≥ 0 ′ and p ′ b < 0 
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3 Asset Pricing 
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•	 n different assets 

•	 m possible states of nature 

•	 one dollar invested in some asset i, and state of nature is s, we receive a

payoff of rsi


•	 m × n payoff matrix: 

	  

r11 . . . r1n 

R = 


 .. . . .. 


 

. . . 
rm1 . . . rmn 
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•	 xi: amount held of asset i. A portfolio of assets is x = x1, . . . , xn . 

•	 A negative value of xi indicates a “short” position in asset i: this amounts

to selling |xi| units of asset i at the beginning of the period, with a promise

to buy them back at the end. Hence, one must pay out rsi|xi| if state s

occurs, which is the same as receiving a payoff of rsixi
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•	 Wealth in state s from a portfolio x 

n 

ws = rsixi. 

i=1 

•	 w = w1, . . . , wm , w = Rx 

•	 pi: price of asset i, p = p1, . . . , pn 

′ •	 Cost of acquiring x is p x. 

3.1 Arbitrage 
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•	 Central problem: Determine pi 

•	 Absence of arbitrage: no investor can get a guaranteed nonnegative

payoff out of a negative investment. In other words, any portfolio that pays

off nonnegative amounts in every state of nature, must have nonnegative

cost.


′if Rx ≥ 0, then p x ≥ 0. 
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•	 Theorem: The absence of arbitrage condition holds if and only if there

exists a nonnegative vector q = (q1, . . . , qm), such that the price of each

asset i is given by


m 

pi = qsrsi. 

s=1 

•	 Applications to options pricing 

4 Cones and extreme rays 

4.1 Definitions 
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•	 A set C ⊂ ℜn is a cone if λx ∈ C for all λ ≥ 0 and all x ∈ C 

•	 A polyhedron of the form P = {x ∈ ℜn | Ax ≥ 0} is called a polyhedral

cone


4.2 Applications 
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•	 P = x ∈ ℜn | Ax ≥ b , y ∈ P 

•	 The recession cone at y 

RC = d ∈ ℜn | y + λd ∈ P, ∀ λ ≥ 0 

•	 It turns out that 
RC = d ∈ ℜn | Ad ≥ 0 

•	 RC independent of y 
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4.3 Extreme rays 
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A x =� 0 of a polyhedral cone C ⊂ ℜn is called an extreme ray if there are 
n − 1 linearly independent constraints that are active at x 

4.4 Unbounded LPs 
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′
Theorem: Consider the problem of minimizing c x over a polyhedral cone C = 
{x ∈ ℜn | A ′ ix ≥ 0, i = 1, . . . , m} that has zero as an extreme point. The 
optimal cost is equal to −∞ if and only if some extreme ray d of C satisfies 
′	 ′
c d < 0. Theorem: Consider the problem of minimizing c x subject to Ax ≥ b, Slide 14 

and assume that the feasible set has at least one extreme point. The optimal 
cost is equal to −∞ if and only if some extreme ray d of the feasible set satisfies 
′
c d < 0.


What happens when the simplex method detects an unbounded problem?
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5 Resolution Theorem 
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P = x ∈ ℜn | Ax ≥ b 

be a nonempty polyhedron with at least one extreme point. Let x1 , . . . , xk be 
the extreme points, and let w1 , . . . , wr be a complete set of extreme rays of P . 

k r 
� 

k 

Q = λix i 
+ θj w

j �
� 

λi ≥ 0, θj ≥ 0, λi = 1 . 

i=1 j=1 i=1 

Then, Q = P . 

5.1 Example 
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x1 − x2 ≥ −2 

x1 + x2 ≥ 1 

x1, x2 ≥ 0 
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• Extreme points: x1 = (0, 2), x2 = (0, 1), and x3 = (1, 0). 

• Extreme rays w1 = (1, 1) and w2 = (1, 0). 

• 
� � � � � � � � 

2 0 1 1 2 1 2 y = = + + = x + w + w . 
2 1 1 0 
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5.2 Proof 
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•	 Q ⊂ P . Let x ∈ Q: 
k r 

x = λix i + θj w
j


i=1 j=1


�k

λi, θj ≥ 0 i=1 λi = 1. 

•	 y = 
�k

i=1 λix
i ∈ P and satisfies Ay ≥ b. 

•	 Awj ≥ 0 for every j: z = 
�r

j=1 θj w
j satisfies Az ≥ 0. 

•	 x = y + z satisfies Ax ≥ b and belongs to P . 
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For the reverse, assume there is a z ∈ P , such that z /∈ Q. 

k r 

max 0λi + 0θj 

i=1 j=1 

k r 

s.t. λix i 
+ θj w

j 
= z 

i=1 j=1 

k 

λi = 1 
i=1 

λi ≥ 0, i = 1, . . . , k, 

θj ≥ 0, j = 1, . . . , r, 

Is this feasible?	 Slide 20 

•	 Dual 
′
min p z + q 

s.t. p ′ xi + q ≥ 0, i = 1, . . . , k, 
′
p wj ≥ 0, j = 1, . . . , r. 

•	 This is unbounded. Why? 

′
•	 There exists a feasible solution (p, q) whose cost p z + q < 0 

•	 p ′ z < p ′ xi for all i and p ′ wj ≥ 0 for all j. 
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• 
′
min p x 

s.t. Ax ≥ b. 

•	 If the optimal cost is finite, there exists an extreme point xi which is

optimal. Since z is a feasible solution, we obtain p ′ x i ≤ p ′ z, which is a

contradiction.


•	 If the optimal cost is −∞, there exists an extreme ray wj such that

p ′ wj < 0, which is again a contradiction
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