15.081J/6.251J Introduction to Mathematical Programming

Lecture 10: Duality Theory III

1 Outline

SLIDE 1

- Farkas lemma
- Asset pricing
- Cones and extreme rays
- Representation of Polyhedra

2 Farkas lemma

SLIDE 2

Theorem:

Exactly one of the following two alternatives hold:

- 1. $\exists x \geq 0 \text{ s.t. } Ax = b.$
- 2. $\exists p \text{ s.t. } p'A \geq 0' \text{ and } p'b < 0.$

2.1 Proof

SLIDE 3

" \Rightarrow " If $\exists x \geq 0$ s.t. Ax = b, and if $p'A \geq 0'$, then $p'b = p'Ax \geq 0$ " \Leftarrow " Assume there is no $x \geq 0$ s.t. Ax = b

$$(P) \max_{\text{s.t.}} \begin{array}{c} \mathbf{0'x} \\ \mathbf{Ax} = \mathbf{b} \\ \mathbf{x} \ge \mathbf{0} \end{array} \qquad (D) \min_{\text{s.t.}} \begin{array}{c} \mathbf{p'b} \\ \mathbf{p'A} \ge \mathbf{0'} \end{array}$$

(P) infeasible \Rightarrow (D) either unbounded or infeasible Since $\boldsymbol{p}=\boldsymbol{0}$ is feasible \Rightarrow (D) unbounded $\Rightarrow \exists \boldsymbol{p}: \ \boldsymbol{p'}\boldsymbol{A} \geq \boldsymbol{0'}$ and $\boldsymbol{p'}\boldsymbol{b} < 0$

3 Asset Pricing

SLIDE 4

- \bullet *n* different assets
- m possible states of nature
- one dollar invested in some asset i, and state of nature is s, we receive a payoff of r_{si}
- $m \times n$ payoff matrix:

$$\boldsymbol{R} = \left[\begin{array}{ccc} r_{11} & \dots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{m1} & \dots & r_{mn} \end{array} \right]$$

SLIDE 5

- x_i : amount held of asset i. A portfolio of assets is $\mathbf{x} = (x_1, \dots, x_n)$.
- A negative value of x_i indicates a "short" position in asset i: this amounts to selling $|x_i|$ units of asset i at the beginning of the period, with a promise to buy them back at the end. Hence, one must pay out $r_{si}|x_i|$ if state s occurs, which is the same as receiving a payoff of $r_{si}x_i$

SLIDE 6

ullet Wealth in state s from a portfolio $oldsymbol{x}$

$$w_s = \sum_{i=1}^n r_{si} x_i.$$

- $w = (w_1, \ldots, w_m), w = Rx$
- p_i : price of asset $i, p = (p_1, \dots, p_n)$
- Cost of acquiring x is p'x.

3.1 Arbitrage

SLIDE 7

- ullet Central problem: Determine p_i
- Absence of arbitrage: no investor can get a guaranteed nonnegative payoff out of a negative investment. In other words, any portfolio that pays off nonnegative amounts in every state of nature, must have nonnegative cost.

if
$$\mathbf{R}\mathbf{x} \geq \mathbf{0}$$
, then $\mathbf{p}'\mathbf{x} \geq 0$.

SLIDE 8

• Theorem: The absence of arbitrage condition holds if and only if there exists a nonnegative vector $\mathbf{q} = (q_1, \dots, q_m)$, such that the price of each asset i is given by

$$p_i = \sum_{s=1}^m q_s r_{si}.$$

• Applications to options pricing

4 Cones and extreme rays

4.1 Definitions

SLIDE 9

- A set $C \subset \mathbb{R}^n$ is a **cone** if $\lambda x \in C$ for all $\lambda \geq 0$ and all $x \in C$
- A polyhedron of the form $P = \{x \in \Re^n \mid Ax \geq 0\}$ is called a polyhedral cone

4.2 Applications

SLIDE 10

- $P = \{ \boldsymbol{x} \in \Re^n \mid \boldsymbol{A}\boldsymbol{x} \ge \boldsymbol{b} \}, \, \boldsymbol{y} \in P$
- The recession cone at y

$$RC = \{ \boldsymbol{d} \in \Re^n \mid \boldsymbol{y} + \lambda \boldsymbol{d} \in P, \forall \lambda \geq 0 \}$$

• It turns out that

$$RC = \{ \boldsymbol{d} \in \Re^n \mid \boldsymbol{A}\boldsymbol{d} \ge \boldsymbol{0} \}$$

• RC independent of y

SLIDE 11

4.3 Extreme rays

SLIDE 12

A $x \neq 0$ of a polyhedral cone $C \subset \mathbb{R}^n$ is called an **extreme ray** if there are n-1 linearly independent constraints that are active at x

4.4 Unbounded LPs

SLIDE 13

Theorem: Consider the problem of minimizing c'x over a polyhedral cone $C = \{x \in \Re^n \mid A_i'x \geq 0, \ i=1,\ldots,m\}$ that has zero as an extreme point. The optimal cost is equal to $-\infty$ if and only if some extreme ray d of C satisfies c'd < 0. Theorem: Consider the problem of minimizing c'x subject to $Ax \geq b$, and assume that the feasible set has at least one extreme point. The optimal cost is equal to $-\infty$ if and only if some extreme ray d of the feasible set satisfies c'd < 0.

SLIDE 14

What happens when the simplex method detects an unbounded problem?

5 Resolution Theorem

SLIDE 15

$$P = \left\{ \boldsymbol{x} \in \Re^n \mid \boldsymbol{A}\boldsymbol{x} \ge \boldsymbol{b} \right\}$$

be a nonempty polyhedron with at least one extreme point. Let x^1, \ldots, x^k be the extreme points, and let w^1, \ldots, w^r be a complete set of extreme rays of P.

$$Q = \left\{ \sum_{i=1}^k \lambda_i \boldsymbol{x}^i + \sum_{j=1}^r \theta_j \boldsymbol{w}^j \mid \lambda_i \geq 0, \; \theta_j \geq 0, \; \sum_{i=1}^k \lambda_i = 1 \right\}.$$

Then, Q = P.

5.1 Example

SLIDE 16

$$x_1 - x_2 \ge -2$$

$$x_1 + x_2 \ge 1$$

$$x_1, x_2 \ge 0$$

SLIDE 17

- Extreme points: $x^1 = (0, 2), x^2 = (0, 1), \text{ and } x^3 = (1, 0).$
- Extreme rays $\mathbf{w}^1 = (1,1)$ and $\mathbf{w}^2 = (1,0)$.

•

$$m{y} = \left[egin{array}{c} 2 \\ 2 \end{array}
ight] = \left[egin{array}{c} 0 \\ 1 \end{array}
ight] + \left[egin{array}{c} 1 \\ 1 \end{array}
ight] + \left[egin{array}{c} 1 \\ 0 \end{array}
ight] = m{x}^2 + m{w}^1 + m{w}^2.$$

5.2 Proof

SLIDE 18

• $Q \subset P$. Let $x \in Q$:

$$oldsymbol{x} = \sum_{i=1}^k \lambda_i oldsymbol{x}^i + \sum_{j=1}^r heta_j oldsymbol{w}^j$$

 $\lambda_i, \ \theta_j \ge 0 \sum_{i=1}^k \lambda_i = 1.$

- $y = \sum_{i=1}^k \lambda_i x^i \in P$ and satisfies $Ay \ge b$.
- $Aw^j \ge 0$ for every j: $z = \sum_{j=1}^r \theta_j w^j$ satisfies $Az \ge 0$.
- x = y + z satisfies $Ax \ge b$ and belongs to P.

SLIDE 19

For the reverse, assume there is a $z \in P$, such that $z \notin Q$.

$$\max \sum_{i=1}^{k} 0\lambda_{i} + \sum_{j=1}^{r} 0\theta_{j}$$
s.t.
$$\sum_{i=1}^{k} \lambda_{i} x^{i} + \sum_{j=1}^{r} \theta_{j} w^{j} = z$$

$$\sum_{i=1}^{k} \lambda_{i} = 1$$

$$\lambda_{i} \ge 0, \qquad i = 1, \dots, k,$$

$$\theta_{j} \ge 0, \qquad j = 1, \dots, r,$$

Is this feasible? SLIDE 20

• Dual

$$\begin{aligned} & \min \quad \boldsymbol{p}'\boldsymbol{z} + q \\ & \text{s.t.} \quad \boldsymbol{p}'\boldsymbol{x}^i + q \geq 0, & & i = 1, \dots, k, \\ & \boldsymbol{p}'\boldsymbol{w}^j \geq 0, & & j = 1, \dots, r. \end{aligned}$$

- This is unbounded. Why?
- There exists a feasible solution (p,q) whose cost p'z + q < 0
- $p'z < p'x^i$ for all i and $p'w^j \ge 0$ for all j.

SLIDE 21

•

$$\begin{array}{ll}
\min & \mathbf{p}'\mathbf{x} \\
\text{s.t.} & \mathbf{A}\mathbf{x} \ge \mathbf{b}.
\end{array}$$

- If the optimal cost is finite, there exists an extreme point x^i which is optimal. Since z is a feasible solution, we obtain $p'x^i \leq p'z$, which is a contradiction.
- If the optimal cost is $-\infty$, there exists an extreme ray \mathbf{w}^j such that $\mathbf{p}'\mathbf{w}^j < 0$, which is again a contradiction

MΙ	Т	Oı	pen	Со	urs	e۷	Vare	Э
htt	p:/	//c	cw.	.mit	.ec	ut		

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.