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Lecture 9: Duality Theory II



1 Outline

e Strict complementary slackness

Geometry of duality

e The dual simplex algorithm

Duality and degeneracy

2 Strict Complementary Slackness

Assume that both problems have an optimal solution:

min 'z max p’b
st. Ax > b st. p’A < ¢
x > 0, p > 0.

There exist optimal solutions to the primal and to the dual that satisfy
e For every j, either z; > 0 or p’A; < ¢;.

e For every i, we have either a,x > b; or p; > 0.

2.1 Example

min bx1 + bxo
s.t. T+ a9 > 2
2$1 — T2 Z 0
T1,T2 Z 0.

e Is (2/3,4/3) strictly complementary?

e Which are all the strictly complementary solutions?

3 The Geometry of Duality

min 'z
/ y —
s.t. a;x > by, i=1,....m
max p’b
m
s.t. g pi@; = C
i=1

p>0
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4 Dual Simplex Algorithm

4.1
[ ]

4.2

Motivation
In simplex method B~'b > 0
Primal optimality condition
c—cyBtA>0
same as dual feasibility

Simplex is a primal algorithm: maintains primal feasibility and works
towards dual feasibility

Dual algorithm: maintains dual feasibility and works towards primal
feasibility

—crxp C1 Cn
TB(1) | |

: B 'A, B 'A,
TB(m) | |

Do not require B~'b > 0
Require € > 0 (dual feasibility)

Dual cost is
p'b=cyB b= cyap

If B~'b > 0 then both dual feasibility and primal feasibility, and also
same cost = optimality

Otherwise, change basis

An iteration

Start with basis matrix B and all reduced costs > 0.
If B~'b > 0 optimal solution found; else, choose [ s.t. xpr) <0.

Consider the Ith row (pivot row) xg(y,v1,. .., V. If Vi v; > 0 then dual
optimal cost = +o00 and algorithm terminates.

. Else, let j s.t.

Cj . Ci

= mimn -——-
[vj]  filvi<0} |ug

Pivot element v;: A; enters the basis and Ap() exits.
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4.3 An example
min x1 + o
s.t. r1 + 2.(62 Z 2
X Z 1
x1,22 >0
min  x7 + 2o max  2p; + p2
st. x1 + 210 —x3 =2 st. pr+p2<1
T1 — T4 = 1 2p1 S 1
(171,!172,$3,:E420 p17p220
X1 o I3 Xrq
0 1 1 0 0
r3=| -2 | -1 —2% 1 0
ry=1| -1 —1 0 0 1
A €2 T3 T4
—-111/2 0 1/2 0
To = 1 1/2 1 —1/2 0
ra=| —1| —1% 0 0 1
X1 i) T3 Xrq
-3/2 0 0 /2 1/2
To = 1/2 0 1 —1/2 1/2
r = 1 1 0 0 -1
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5 Duality and Degeneracy

e Any basis matrix B leads to dual basic solution p’ = cg’B™".

e The dual constraint p’A; = ¢; is active if and only if the reduced cost ¢;
is zero.

e Since p is m-dimensional, dual degeneracy implies more than m reduced
costs that are zero.

e Dual degeneracy is obtained whenever there exists a nonbasic variable
whose reduced cost is zero.

5.1 Example

min 3x1 + 2o max 2p;

s.t. x1 + a0 — Tr3 = 2 s.t. P1 + 2p2 S 3
201 — 2y — x4 =0 p1—p2 <1
T1,T2,r3,T4 2> 0, p1,p2 = 0.

Equivalent primal problem

min 3x1 + o
s.t. r1 + X2 Z 2
21‘1 — X9 Z 0
T1,x2 Z 0.

e Four basic solutions in primal: A, B, C, D.
e Six distinct basic solutions in dual: A, A’, A”, B, C, D.

e Different bases may lead to the same basic solution for the primal, but
to different basic solutions for the dual. Some are feasible and some are
infeasible.
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5.2 Degeneracy and uniqueness
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e If dual has a nondegenerate optimal solution, the primal problem has a
unique optimal solution.

e [t is possible, however, that dual has a degenerate solution and the dual
has a unique optimal solution.
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