15.081J/6.251J Introduction to Mathematical Programming

Lecture 7: The Simplex Method III

1 Outline

SLIDE 1

- Finding an initial BFS
- The complete algorithm
- The column geometry
- Computational efficiency
- The diameter of polyhedra and the Hirch conjecture

2 Finding an initial BFS

SLIDE 2

- Goal: Obtain a BFS of Ax = b, $x \ge 0$ or decide that LOP is infeasible.
- Special case: $b \ge 0$

$$egin{aligned} Ax \leq b, & x \geq 0 \ \Rightarrow Ax + s = b, & x, s \geq 0 \ s = b, & x = 0 \end{aligned}$$

2.1 Artificial variables

SLIDE 3

$$Ax = b, \quad x \ge 0$$

- 1. Multiply rows with -1 to get $b \geq 0$.
- 2. Introduce artificial variables y, start with initial BFS $y=b,\ x=0$, and apply simplex to auxiliary problem

min
$$y_1 + y_2 + \ldots + y_m$$

s.t. $Ax + y = b$
 $x, y \ge 0$

SLIDE 4

- 3. If $cost > 0 \Rightarrow LOP$ infeasible; stop.
- 4. If cost = 0 and no artificial variable is in the basis, then a BFS was found.
- 5. Else, all $y_i^* = 0$, but some are still in the basis. Say we have $A_{B(1)}, \ldots, A_{B(k)}$ in basis k < m. There are m k additional columns of A to form a basis.

Slide 5

6. Drive artificial variables out of the basis: If lth basic variable is artificial examine lth row of $B^{-1}A$. If all elements $= 0 \Rightarrow$ row redundant. Otherwise pivot with $\neq 0$ element.

2.2 Example

SLIDE 6

 $x_1,\ldots,x_8\geq 0.$

SLIDE 7

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
	-10	0	-8	-18	0	0	0	0	1
$x_5 =$	3	1	2	3	0	1	0	0	0
$x_6 =$	2	-1	2	6	0	0	1	0	0
$x_7 =$	5	0	4	9	0	0	0	1	0
$x_4 =$	1	0		3*	1	0	0	0	1

SLIDE 8

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
	-4								-1
$x_5 =$	2	2*	0	0	1	1	-1	0	1
	0		1	0	-1	0	1/2	0	-1
$x_7 =$	2	2	0	0	1	0	-2	1	1
$x_3 =$	1/3	0	0	1	1/3	0	0	0	1/3

SLIDE 9

					x_4				
	0	0	0	0	0	2	2	0	1
$x_1 =$	1	1	0	0	1/2	1/2	-1/2	0	1/2
$x_2 =$	1/2	0	1	0	-3/4	1/4	1/4	0	-3/4
$x_7 =$	0	0	0	0	0	-1	-1	1	0
$x_3 =$	1/3	0	0	1	1/3	0	0	0	1/2 $-3/4$ 0 $1/3$

SLIDE 10

		x_1	x_2	x_3	x_4
	*	*	*	*	*
$x_1 =$	1	1	0	0	1/2
$x_2 =$	1/2	0	1	0	-3/4
$x_3 =$	1/3	0	0	1	1/3

3 A complete Algorithm for LO

SLIDE 11

Phase I:

- 1. By multiplying some of the constraints by -1, change the problem so that $b \geq 0$.
- 2. Introduce y_1, \ldots, y_m , if necessary, and apply the simplex method to min $\sum_{i=1}^m y_i$.
- 3. If cost > 0, original problem is infeasible; STOP.
- 4. If cost= 0, a feasible solution to the original problem has been found.
- $5.\,$ Drive artificial variables out of the basis, potentially eliminating redundant rows.

Slide 12

Phase II:

- 1. Let the final basis and tableau obtained from Phase I be the initial basis and tableau for Phase II.
- 2. Compute the reduced costs of all variables for this initial basis, using the cost coefficients of the original problem.
- 3. Apply the simplex method to the original problem.

3.1 Possible outcomes

SLIDE 13

- 1. Infeasible: Detected at Phase I.
- 2. \boldsymbol{A} has linearly dependent rows: Detected at Phase I, eliminate redundant rows.
- 3. Unbounded (cost= $-\infty$): detected at Phase II.
- 4. Optimal solution: Terminate at Phase II in optimality check.

4 The big-M method

SLIDE 14

min
$$\sum_{j=1}^{n} c_j x_j + M \sum_{i=1}^{m} y_i$$
s.t.
$$Ax + y = b$$

$$x, y \ge 0$$

5 The Column Geometry

SLIDE 15

min
$$c'x$$

s.t. $Ax = b$
 $e'x = 1$
 $x \ge 0$

$$x_1 \begin{bmatrix} A_1 \\ c_1 \end{bmatrix} + x_2 \begin{bmatrix} A_2 \\ c_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} A_n \\ c_n \end{bmatrix} = \begin{bmatrix} b \\ z \end{bmatrix}$$

SLIDE 16

SLIDE 17

6 Computational efficiency

SLIDE 18

Exceptional practical behavior: linear in n Worst case

SLIDE 19

Theorem Slide 20

- The feasible set has 2^n vertices
- The vertices can be ordered so that each one is adjacent to and has lower cost than the previous one.
- There exists a pivoting rule under which the simplex method requires $2^n 1$ changes of basis before it terminates.

7 The Diameter of polyhedra

SLIDE 21

- Given a polyhedron P, and x, y vertices of P, the distance d(x, y) is the minimum number of jumps from one vertex to an adjacent one to reach y starting from x.
- The diameter D(P) is the maximum of $d(x, y) \ \forall x, y$.

SLIDE 22

- $\Delta(n,m)$ as the maximum of D(P) over all bounded polyhedra in \Re^n that are represented in terms of m inequality constraints.
- $\Delta_u(n,m)$ is like $\Delta(n,m)$ but for possibly unbounded polyhedra.

7.1 The Hirsch Conjecture

SLIDE 23

 $\Delta(2,m) = \left\lfloor \frac{m}{2} \right\rfloor, \qquad \Delta_u(2,m) = m-2$

• Hirsch Conjecture: $\Delta(n,m) \leq m-n$.

SLIDE 24

• We know that

$$\Delta_u(n,m) \ge m - n + \left\lfloor \frac{n}{5} \right\rfloor$$

$$\Delta(n,m) \le \Delta_u(n,m) < m^{1 + \log_2 n} = (2n)^{\log_2 m}$$

MΙ	Т	Oı	pen	Со	urs	e۷	Vare	Э
htt	p:/	//c	cw.	.mit	.ec	ut		

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.