15.081J/6.251J Introduction to Mathematical Programming

Lecture 6: The Simplex Method II

1 Outline

SLIDE 1

- Revised Simplex method
- The full tableau implementation
- Anticycling

2 Revised Simplex

SLIDE 2

Initial data: A, b, c

- 1. Start with basis $\boldsymbol{B} = [\boldsymbol{A}_{B(1)}, \dots, \boldsymbol{A}_{B(m)}]$ and \boldsymbol{B}^{-1} .
- 2. Compute $p' = c'_B B^{-1}$ $\overline{c}_j = c_j - p' A_j$
 - If $\overline{c}_j \geq 0$; x optimal; stop.
 - Else select $j : \overline{c}_j < 0$.

SLIDE 3

- 3. Compute $\boldsymbol{u} = \boldsymbol{B}^{-1} \boldsymbol{A}_j$.
 - If $u \leq 0 \Rightarrow$ cost unbounded; stop
 - Else

4.
$$\theta^* = \min_{1 \le i \le m, u_i > 0} \frac{x_{B(i)}}{u_i} = \frac{u_{B(l)}}{u_l}$$

- 5. Form a new basis \overline{B} by replacing $A_{B(l)}$ with A_j .
- 6. $y_j = \theta^*, y_{B(i)} = x_{B(i)} \theta^* u_i$

SLIDE 4

- 7. Form $[B^{-1}|u]$
- 8. Add to each one of its rows a multiple of the lth row in order to make the last column equal to the unit vector e_l .

 The first m columns is \overline{B}^{-1} .

2.1 Example

SLIDE 5

$$\begin{aligned} \mathbf{B} &= \{ \boldsymbol{A}_1, \boldsymbol{A}_3, \boldsymbol{A}_6, \boldsymbol{A}_7 \}, & \text{BFS: } \boldsymbol{x} &= (2, 0, 2, 0, 0, 1, 4)' \\ \overline{\boldsymbol{c}}' &= (0, 7, 0, 2, -3, 0, 0) \\ \boldsymbol{B} &= \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}, & \boldsymbol{B}^{-1} &= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{bmatrix} \\ (u_1, u_3, u_6, u_7)' &= \boldsymbol{B}^{-1} \boldsymbol{A}_5 &= (1, -1, 1, 1)' \\ \boldsymbol{\theta}^* &= \min\left(\frac{2}{1}, \frac{1}{1}, \frac{4}{1}\right) &= 1, & l &= 6 \end{aligned}$$

l = 6 (\mathbf{A}_6 exits the basis).

 $[B^{-1}|u] = \begin{bmatrix} 0 & 1 & 0 & 0 & 1\\ 1 & -1 & 0 & 0 & -1\\ -1 & 1 & 1 & 0 & 1\\ -1 & 1 & 0 & 1 & 1 \end{bmatrix}$ $\Rightarrow \overline{B}^{-1} = \begin{bmatrix} 1 & 0 & -1 & 0\\ 0 & 0 & 1 & 0\\ -1 & 1 & 1 & 0\\ 0 & 0 & -1 & 1 \end{bmatrix}$

SLIDE 7

2.2 Practical issues

SLIDE 8

• Numerical Stability

 ${m B}^{-1}$ needs to be computed from scratch once in a while, as errors accumulate

• Sparsity

 B^{-1} is represented in terms of sparse triangular matrices

3 Full tableau implementation

SLIDE 9

$-c_B'B^{-1}b$	$oldsymbol{c}' - oldsymbol{c}_B' oldsymbol{B}^{-1} oldsymbol{A}$
$B^{-1}b$	$B^{-1}A$

or, in more detail,

$-oldsymbol{c}_B'oldsymbol{x}_B$	\overline{c}_1	 \overline{c}_n
$x_{B(1)}$		
:	$\boldsymbol{B}^{-1} \boldsymbol{A}_1$	 $\boldsymbol{B}^{-1}\boldsymbol{A}_n$
$x_{B(m)}$		

3.1 Example

BFS: $\boldsymbol{x} = (0, 0, 0, 20, 20, 20)'$ B=[$\boldsymbol{A}_4, \boldsymbol{A}_5, \boldsymbol{A}_6$]

SLIDE 11

SLIDE 10

 x_4 x_1 x_2 x_3 x_5 x_6 0 -10-12-120 0 1 2 2 0 1 0 $x_4 =$ 2* $x_5 =$ 1 2 0 1 0 $x_6 =$ 2 2 20 1 0 0 1

 $\overline{c}' = c' - c'_B B^{-1} A = c' = (-10, -12, -12, 0, 0, 0)$

SLIDE 12

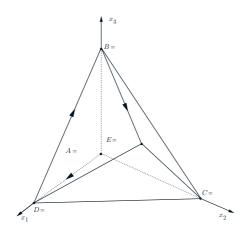
		x_1	x_2	x_3	x_4	x_5	x_6
	100	0	-7	-2	0	5	0
$x_4 =$	10	0	1.5	1*	1	-0.5	0
$x_1 =$	10	1	0.5	1	0	0.5	0
$x_6 =$	0	0	1	-1	0	-1	1

Slide 13

		x_1	x_2	x_3	x_4	x_5	x_6
	120	0	-4	0	2	4	0
$x_3 =$	10	0	1.5	1	1	-0.5	0
$x_1 =$	0	1	-1	0	-1	1	0
$x_6 =$	10	0	2.5*	0	1	-1.5	1

		x_1	x_2	x_3	x_4	x_5	x_6
	136	0	0	0	3.6	1.6	1.6
$x_3 =$	4	0	0	1	0.4	0.4	-0.6
		1	0	0	-0.6	0.4	0.4
$x_2 =$	4	0	1	0	0.4	-0.6	0.4

SLIDE 15



4 Comparison of implementations

SLIDE 16

SLIDE 17

	Full tableau	Revised simplex
Memory	O(mn)	$O(m^2)$
Worst-case time	O(mn)	O(mn)
Best-case time	O(mn)	$O(m^2)$

5 Anticycling

5.1 Degeneracy in Practice

Does degeneracy really happen in practice?

$$\sum_{j=1}^{n} x_{ij} = 1$$

$$\sum_{i=1}^{n} x_{ij} = 1$$

$$x_{ij} \ge 0$$

n! vertices

For each vertex $\exists \ 2^{n-1}n^{n-2}$ different bases (n=8) for each vertex $\exists \ 33,554,432$ bases.

5.2 Perturbations

SLIDE 18

$$(P) \min \quad \boldsymbol{c'x}$$
 $(P_{\epsilon}) \min \quad \boldsymbol{c'x}$ s.t. $\boldsymbol{Ax} = \boldsymbol{b} + \begin{pmatrix} \epsilon \\ \epsilon^2 \\ \vdots \\ \epsilon^m \end{pmatrix}$ $\boldsymbol{x} \geq \boldsymbol{0}$ $\boldsymbol{x} \geq \boldsymbol{0}$.

5.2.1 Theorem

SLIDE 19

 $\exists \epsilon_1 > 0$: for all $0 < \epsilon < \epsilon_1$

$$egin{aligned} Ax &= b + \left(egin{array}{c} \epsilon \ dots \ \epsilon^m \end{array}
ight) \ x &> 0 \end{aligned}$$

is non-degenerate.

5.2.2 Proof

SLIDE 20

Let B_1, \ldots, B_r be all the bases.

$$egin{aligned} oldsymbol{B}_r^{-1} \left[oldsymbol{b} + \left(egin{array}{c} \epsilon \ dredsymbol{arepsilon} \ arepsilon \end{array}
ight)
ight] = \left[egin{array}{c} \overline{b}_1^r + oldsymbol{B}_{11}^r \epsilon + \cdots + oldsymbol{B}_{1m}^r \epsilon^m \ dredsymbol{arepsilon} \ ec{b}_m^r + oldsymbol{B}_{m1}^r \epsilon + \cdots + oldsymbol{B}_{mm}^r \epsilon^m \end{array}
ight] \end{aligned}$$

where:

$$oldsymbol{B}_r^{-1} = \left[egin{array}{ccc} oldsymbol{B}_{11}^r & \cdots & oldsymbol{B}_{1m}^r \ dots & & dots \ oldsymbol{B}_{m1}^r & \cdots & oldsymbol{B}_{mm}^r \end{array}
ight], oldsymbol{B}_r^{-1} oldsymbol{b} = \left[egin{array}{ccc} oldsymbol{ar{b}}_1^r \ dots \ ar{ar{b}}_m^r \end{array}
ight]$$

- $\overline{b}_i^r + \boldsymbol{B}_{i1}^r \theta + \dots + \boldsymbol{B}_{im}^r \theta^m$ is a polynomial in θ
- Roots $\theta_{i,1}^r, \theta_{i,2}^r, \dots, \theta_{i,m}^r$
- If $\epsilon \neq \theta_{i,1}^r, \dots, \theta_{i,m}^r \Rightarrow \overline{b}_i^r + B_{i,1}^r \epsilon + \dots + B_{i,m}^r \epsilon^m \neq 0$.
- Let ϵ_1 the smallest positive root $\Rightarrow 0 < \epsilon < \epsilon_1$ all RHS are $\neq 0 \Rightarrow$ non-degeneracy.

5.3 Lexicography

SLIDE 22

- u is lexicographically larger than v, u > v, if $u \neq v$ and the first nonzero component of u v is positive.
- Example:

$$(0, 2, 3, 0) \stackrel{L}{>} (0, 2, 1, 4),$$

$$(0, 4, 5, 0) \stackrel{L}{<} (1, 2, 1, 2).$$

5.4 Lexicography-Pertubation

5.4.1 Theorem

SLIDE 23

Let **B** be a basis of Ax = b, $x \ge 0$. Then **B** is feasible for $Ax = b + (\epsilon, ..., \epsilon^m)'$, $x \ge 0$ for sufficiently small ϵ if and only if

$$\boldsymbol{u}_i = (\overline{b}_i, B_{i1}, \dots, B_{im}) \stackrel{L}{>} \boldsymbol{0}, \forall i$$

$$\mathbf{B}^{-1} = (B_{ij})$$
$$(\mathbf{B}^{-1}\mathbf{b})_i = (\overline{b}_i)$$

5.4.2 Proof

SLIDE 24

 \mathbf{B} is feasible for peturbed problem " \Leftrightarrow " $\mathbf{B}^{-1}(\mathbf{b} + (\epsilon, \dots, \epsilon^m)') \ge \mathbf{0} \Leftrightarrow \overline{b}_i + \mathbf{B}_{i1}\epsilon + \dots + \mathbf{B}_{im}\epsilon^m \ge 0 \; \forall \; i$ \Leftrightarrow First non-zero component of $\mathbf{u}_i = (\overline{b}_i, B_{i1}, \dots, B_{im})$ is positive $\forall i$.

5.5 Summary

SLIDE 25

- 1. We start with: (P): $Ax = b, x \ge 0$
- 2. We introduce (P_{ϵ}) : $Ax = b + (\epsilon, \dots, \epsilon^m)', x \geq 0$
- 3. A basis is feasible + non-degenerate in $(P_{\epsilon}) \Leftrightarrow u_i \stackrel{L}{>} \mathbf{0}$ in (P).
- 4. If we maintain $u_i \stackrel{L}{>} \mathbf{0}$ in $(P) \Rightarrow (P_{\epsilon})$ is non-degenerate \Rightarrow Simplex is finite in (P_{ϵ}) for sufficiently small ϵ .

5.6 Lexicographic pivoting rule

- 1. Choose an entering column A_j arbitrarily, as long as $\overline{c}_j < 0$; $u = B^{-1}A_j$.
- 2. For each i with $u_i > 0$, divide the ith row of the tableau (including the entry in the zeroth column) by u_i and choose the lexicographically smallest row. If row l is lexicographically smallest, then the lth basic variable $x_{B(l)}$ exits the basis.

5.6.1 Example

SLIDE 27

• j = 3

$$\bullet \begin{vmatrix}
1 & 0 & 5 & 3 & \cdots \\
2 & 4 & 6 & -1 & \cdots \\
3 & 0 & 7 & 9 & \cdots
\end{vmatrix}$$

- $x_{B(1)}/u_1 = 1/3$ and $x_{B(3)}/u_3 = 3/9 = 1/3$.
- We divide the first and third rows of the tableau by $u_1 = 3$ and $u_3 = 9$, respectively, to obtain:

• Since 7/9 < 5/3, the third row is chosen to be the pivot row, and the variable $x_{B(3)}$ exits the basis.

5.6.2 Uniqueness

SLIDE 28

- Why lexicographic pivoting rule always leads to a unique choice for the exiting variable?
- Otherwise, two rows in tableau proportional $\Rightarrow \operatorname{rank}(\boldsymbol{B}^{-1}\boldsymbol{A}) < m \Rightarrow \operatorname{rank}(\boldsymbol{A}) < m$

5.7 Theorem Slide 29

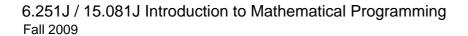
If simplex starts with all the rows in the simplex tableau, other than the zeroth row, lexicographically positive and the lexicographic pivoting rule is followed, then

- (a) Every row of the simplex tableau, other than the zeroth row, remains lexicographically positive throughout the algorithm.
- (b) The zeroth row strictly increases lexicographically at each iteration.
- (c) The simplex method terminates after a finite number of iterations.

5.8 Smallest subscript pivoting rule

- 1. Find the smallest j for which the reduced cost \overline{c}_j is negative and have the column A_j enter the basis.
- 2. Out of all variables x_i that are tied in the test for choosing an exiting variable, select the one with the smallest value of i.

MΓ	T OpenCourseWar	re
htt	p://ocw.mit.edu	



For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.