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Lecture 6: The Simplex Method II



1 Outline

SLIDE 1
e Revised Simplex method
e The full tableau implementation
e Anticycling
2 Revised Simplex
SLIDE 2
Initial data: A, b, ¢
1. Start with basis B = [AB(l)a ey AB(m)]
and B
2. Compute p’ = ¢z B~
¢j=c¢—pA;
e If ¢; > 0;  optimal; stop.
e Else select j :¢; < 0.
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3. Compute u = BilAj.
e If u < 0 = cost unbounded; stop
e Else
4. 0* = min I6) _ 1B
1<i<m,u; >0 Ui up
5. Form a new basis B by replacing Ap(y with Aj;.
6. yj =0, ypu) = rpu) — 0w
SLIDE 4
7. Form [B™'|u]
8. Add to each one of its rows a multiple of the /th row in order to make the
last column equal to the unit vector e;.
The first m columns is B .
2.1 Example
SLIDE 5
min x1+ Dxo —2x3
s.t. x4+ a9+ T3 S 4
X S 2
T3 S 3
3o+ w3 <6
i, T2, z3 >0
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B = {A,, A3, Ag, A7}, BFS: z =(2,0,2,0,0,1,4)
¢ =(0,7,0,2,-3,0,0)
1100 0 100
1000 4 | 1 =100
B=log110| B -1 110
0101 1 101

(Ul,U3,U6,U7)/ = B_1A5 = (15 _15 17 1)I
9*:min(%,%q) =1, [=6

1 =6 (Ag exits the basis). SLIDE 7
0 100 1
I 1 -1 00 —1
BT =11 110 1
-1 101 1
10 -1 0
——1 00 10
=B =1 01 10
00 -1 1
2.2 Practical issues
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e Numerical Stability
B! needs to be computed from scratch once in a while, as errors accu-
mulate
e Sparsity
B! is represented in terms of sparse triangular matrices
3 Full tableau implementation
SLIDE 9

—cyB7'b | ¢ —cz3BT'A

B7'b B'A
or, in more detail,
—cyxp C1 . Cn
TB(1) | |
B A, B 'A,
TB(m) | |




3.1 Example

min —10z7 — 1220 — 1223
s.t. r1 + 2x9 + 223 < 20
2:171 + To + 2$3 S 20
2:171 + 2$2 + T3 S 20
x1, 22,23 > 0
min —10x; — 12292 — 12x3
s.t. r1 + 2290 + 213 + 24 = 20
2x1 + To + 213 + x5 = 20
2$1 —+ 2$2 + T3 + T = 20
T1,...,%p Z 0
BFS: = = (0,0,0, 20,20, 20)’
B=[A4, As5, Ag]
z1 T2 r3 X4 T5 Te
0 | —10 —12 12 0 0 0
xzy = | 20 1 2 2 1 0 0
x5 = | 20 2% 1 2 0 1 0
re = | 20 2 2 1 0 0 1
@ =c -cyB'A=¢c =(-10,-12,-12,0,0,0)
T To Ts T4 Trs5 Tg
100 0o -7 -2 0 5 0
Ty = 10 0 1.5 1* 1 -05 0
T = 10 1 0.5 1 0 0.5 0
Tg = 0 0 1 -1 0 -1 1
Z1 €2 €r3 L4 Is L6
120 0 —4 0 2 4 0
T3 = 10 0 1.5 1 1 -0.5 0
T = 0 1 -1 0 -1 1 0
Te = 10 0 2.5% 0 1 -15 1
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1 T2 X3 Lq L5 L6

136 0 0 O 3.6 1.6 1.6

T3 = 4 0 0 1 0.4 04 —0.6
T = 4 1 0 0 -06 0.4 0.4
Ty = 4 0 1 0 04 —0.6 0.4

4 Comparison of implementations

Full tableau | Revised simplex
Memory O(mn) O(m?)
Worst-case time O(mn) O(mn)
Best-case time O(mn) O(m?)

5 Anticycling

5.1 Degeneracy in Practice

Does degeneracy really happen in practice?

n

> wij =1
=1

n

> wij =1
i=1

Lij Z 0
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n! vertices:
For each vertex 3 2"~ 'n"~2 different bases (n = 8) for each vertex 3 33,554, 432
bases.

5.2 Perturbations

SLIDE 18
(P)min c'z (P.)min c'z
€
2
st. Ax=0b s.t. Az =b+ )
Gm
x>0 x> 0.
5.2.1 Theorem SLIDE 19
de; >0: forall0 <e< ¢
€
Ax =b+ :
em
x>0
is non-degenerate.
5.2.2 Proof SLIDE 20
Let Bq,..., B, be all the bases.
€ b+ BYe4---+ B}, ™
B '|b+ | = :
em b +Be+---+ B "
where: —
By, - B, by
B = | Bb= |
B, - B, by
SLIDE 21

e b, + B0 +---+ Bl 0™ is a polynomial in 0
e Roots 0] 1,07 5,...,0;,,

o Ife£07,,....00, =b +Bjet+ -+ B " #0.

e Let ¢; the smallest positive root = 0 < € < ¢; all RHS are # 0 =
non-degeneracy.



5.3 Lexicography

L
e u is lexicographically larger than v, u > v, if w # v and the first
nonzero component of w — v is positive.

e Example:

(0’ 2’ 3’ 0) (0’ 27 17 4)7

A Ve

(0’ 4’ 5’ 0) (]" 27 17 2)'

5.4 Lexicography-Pertubation
5.4.1 Theorem
Let B be a basis of Ax = b, * > 0. Then B is feasible for Ax = b +

(... €™, x> 0 for sufficiently small € if and only if

_ L
u; = (bi, Bi1, ..., Bim) > 0,Yi

5.4.2 Proof
B is feasible for peturbed problem “&” B l'(b+(e...,e"))>0s
< First non-zero component of w; = (b;, B;1, ..., Biy) is positive V i.
5.5 Summary

1. We start with: (P): Az =b,x >0

2. We introduce (P.): Ax =b+ (¢,...,e™), >0

L
3. A basis is feasible 4+ non-degenerate in (P.) < u; > 0 in (P).

L
4. If we maintain u; > 0 in (P) = (FP.) is non-degenerate = Simplex is
finite in (P,) for sufficiently small e.

5.6 Lexicographic pivoting rule

1. Choose an entering column A; arbitrarily, as long as ¢; < 0; u = BilAj.

2. For each ¢ with u; > 0, divide the ¢th row of the tableau (including the
entry in the zeroth column) by u; and choose the lexicographically smallest
row. If row [ is lexicographically smallest, then the Ith basic variable x gy
exits the basis.
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5.6.1 Example

SLIDE 27
e =3
110 5 3
o2 |4 6 -1
310 7 9
e rp)/ur =1/3 and xp(3)/uz =3/9 =1/3.
e We divide the first and third rows of the tableau by u; = 3 and ug = 9,
respectively, to obtain:
1/3 [0 5/3 1
° * * * *
/3 10 7/9 1
e Since 7/9 < 5/3, the third row is chosen to be the pivot row, and the
variable rp(3) exits the basis.
5.6.2 Uniqueness
SLIDE 28
e Why lexicographic pivoting rule always leads to a unique choice for the
exiting variable?
e Otherwise, two rows in tableau proportional = rank(B_lA) < m =
rank(A) <m
5.7 Theorem SLIDE 29
If simplex starts with all the rows in the simplex tableau, other than the zeroth
row, lexicographically positive and the lexicographic pivoting rule is followed,
then
(a) Every row of the simplex tableau, other than the zeroth row, remains
lexicographically positive throughout the algorithm.
(b) The zeroth row strictly increases lexicographically at each iteration.
(¢) The simplex method terminates after a finite number of iterations.
5.8 Smallest subscript
ivoting rule
p & SLIDE 30

1. Find the smallest j for which the reduced cost ¢; is negative and have the
column A; enter the basis.

2. Out of all variables z; that are tied in the test for choosing an exiting
variable, select the one with the smallest value of i.
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