15.081J/6.251J Introduction to Mathematical Programming

Lecture 4: Geometry of Linear Optimization III

1 Outline

SLIDE 1

- 1. Projections of Polyhedra
- 2. Fourier-Motzkin Elimination Algorithm
- 3. Optimality Conditions

2 Projections of polyhedra

SLIDE 2

• $\pi_k: \Re^n \mapsto \Re^k$ projects ${\boldsymbol x}$ onto its first k coordinates:

$$\pi_k(\mathbf{x}) = \pi_k(x_1, \dots, x_n) = (x_1, \dots, x_k).$$

•

$$\Pi_k(S) = \{ \pi_k(\boldsymbol{x}) \mid \boldsymbol{x} \in S \};$$

Equivalently

$$\Pi_k(S) = \{(x_1, \dots, x_k) \mid \text{there exist } x_{k+1}, \dots, x_n\}$$

s.t.
$$(x_1, ..., x_n) \in S$$
.

2.1 The Elimination Algorithm

2.1.1 By example

• Consider the polyhedron

Slide 3

$$x_1 + x_2 \ge 1$$

$$x_1 + x_2 + 2x_3 \ge 2$$

$$2x_1 + 3x_3 \ge 3$$

$$x_1 - 4x_3 \ge 4$$

$$-2x_1 + x_2 - x_3 \ge 5.$$

• We rewrite these constraints

$$0 \ge 1 - x_1 - x_2$$

$$x_3 \ge 1 - (x_1/2) - (x_2/2)$$

$$x_3 \ge 1 - (2x_1/3)$$

$$-1 + (x_1/4) \ge x_3$$

$$-5 - 2x_1 + x_2 \ge x_3.$$

• Eliminate variable x_3 , obtaing polyhedron Q

$$0 \ge 1 - x_1 - x_2$$

$$-1 + x_1/4 \ge 1 - (x_1/2) - (x_2/2)$$

$$-1 + x_1/4 \ge 1 - (2x_1/3)$$

$$-5 - 2x_1 + x_2 \ge 1 - (x_1/2) - (x_2/2)$$

$$-5 - 2x_1 + x_2 \ge 1 - (2x_1/3).$$

2.2 The Elimination Algorithm

SLIDE 4

1. Rewrite $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ in the form

$$a_{in}x_n \ge -\sum_{j=1}^{n-1} a_{ij}x_j + b_i, \qquad i = 1, \dots, m;$$

if $a_{in} \neq 0$, divide both sides by a_{in} . By letting $\overline{x} = (x_1, \dots, x_{n-1})$ that P is represented by:

$$x_n \geq d_i + \mathbf{f}'_i \overline{\mathbf{x}}, \qquad \text{if } a_{in} > 0,$$
 $d_j + \mathbf{f}'_j \overline{\mathbf{x}} \geq x_n, \qquad \text{if } a_{jn} < 0,$
 $0 \geq d_k + \mathbf{f}'_k \overline{\mathbf{x}}, \qquad \text{if } a_{kn} = 0.$

2. Let Q be the polyhedron in \Re^{n-1} defined by:

$$d_j + \mathbf{f}'_j \overline{\mathbf{x}} \ge d_i + \mathbf{f}'_i \overline{\mathbf{x}},$$
 if $a_{in} > 0$ and $a_{jn} < 0$,
 $0 \ge d_k + \mathbf{f}'_k \overline{\mathbf{x}},$ if $a_{kn} = 0$.

Theorem:

The polyhedron Q constructed by the elimination algorithm is equal to the projection $\Pi_{n-1}(P)$ of P.

2.3 Implications

SLIDE 5

• Let $P \subset \Re^{n+k}$ be a polyhedron. Then, the set

$$\{x \in \Re^n \mid \text{there exists } y \in \Re^k \text{ such that } (x, y) \in P\}$$

is also a polyhedron.

- Let $P \subset \Re^n$ be a polyhedron and let A be an $m \times n$ matrix. Then, the set $Q = \{Ax \mid x \in P\}$ is also a polyhedron.
- The convex hull of a finite number of vectors is a polyhedron.

2.4 Algorithm for LO

SLIDE 6

- Consider min c'x subject to $x \in P$.
- Define a new variable x_0 and introduce the constraint $x_0 = c'x$.
- Apply the elimination algorithm n times to eliminate the variables x_1, \ldots, x_n
- ullet We are left with the set

$$Q = \{x_0 \mid \text{there exists } \boldsymbol{x} \in P \text{ such that } x_0 = \boldsymbol{c'x} \},$$

and the optimal cost is equal to the smallest element of Q.

3 Optimality Conditions

3.1 Feasible directions

SLIDE 7

- We are at $x \in P$ and we contemplate moving away from x, in the direction of a vector $d \in \mathbb{R}^n$.
- ullet We need to consider those choices of d that do not immediately take us outside the feasible set.
- A vector $d \in \mathbb{R}^n$ is said to be a **feasible direction** at x, if there exists a positive scalar θ for which $x + \theta d \in P$.

SLIDE 8

- x be a BFS to the standard form problem corresponding to a basis B.
- $x_i = 0, i \in N, x_B = B^{-1}B.$
- We consider moving away from x, to a new vector $x + \theta d$, by selecting a nonbasic variable x_i and increasing it to a positive value θ , while keeping the remaining nonbasic variables at zero.
- Algebraically, $d_j = 1$, and $d_i = 0$ for every nonbasic index i other than j.
- The vector x_B of basic variables changes to $x_B + \theta d_B$.
- Feasibility: $A(x + \theta d) = B \Rightarrow Ad = 0$.
- $\mathbf{0} = Ad = \sum_{i=1}^{n} A_i d_i = \sum_{i=1}^{m} A_{B(i)} d_{B(i)} + A_j = Bd_B + A_j \Rightarrow d_B = d_B$
- Nonnegativity constraints?
 - If x nondegenerate, $x_B > 0$; thus $x_B + \theta d_B \ge 0$ for θ is sufficiently
 - If x degenerate, then d is not always a feasible direction. Why?
- Effects in cost? Cost change: $c'd = c_j - c'_B B^{-1} A_j$ This quantity is called **reduced cost** \overline{c}_i of the variable x_i .

3.2 Theorem

SLIDE 10

- ullet $oldsymbol{x}$ BFS associated with basis B
- \overline{c} reduced costs Then
- If $\overline{c} \geq 0 \Rightarrow x$ optimal
- x optimal and non-degenerate $\Rightarrow \overline{c} \geq 0$

3.3Proof

 \bullet y arbitrary feasible solution

$$ullet \ d=y-x\Rightarrow Ax=Ay=b\Rightarrow Ad=0$$

SLIDE 11

$$\Rightarrow Bd_B + \sum_{i \in N} A_i d_i = 0$$

$$\Rightarrow d_B = -\sum_{i \in N} B^{-1} A_i d_i$$

$$\Rightarrow \boldsymbol{B}\boldsymbol{d}_{B} + \sum_{i \in N} \boldsymbol{A}_{i}d_{i} = \boldsymbol{0}$$

$$\Rightarrow \boldsymbol{d}_{B} = -\sum_{i \in N} \boldsymbol{B}^{-1}\boldsymbol{A}_{i}d_{i}$$

$$\Rightarrow \boldsymbol{c}'\boldsymbol{d} = \boldsymbol{c}'_{B}\boldsymbol{d}_{B} + \sum_{i \in N} c_{i}d_{i}$$

$$= \sum_{i \in N} (c_{i} - \boldsymbol{c}'_{B}\boldsymbol{B}^{-1}\boldsymbol{A}_{i})d_{i} = \sum_{i \in N} \overline{c}_{i}d_{i}$$

SLIDE 12

- Since $y_i \ge 0$ and $x_i = 0, i \in N$, then $d_i = y_i x_i \ge 0, i \in N$
- $c'd = c'(y x) \ge 0 \implies c'y \ge c'x$ $\Rightarrow x$ optimal
 - (b) Your turn

MΙ	Т	Oı	pen	Со	urs	e۷	Vare	Э
htt	p:/	//c	cw.	.mit	.ec	ut		

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.