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Lecture 4: Geometry of Linear Optimization III



1 Outline

1. Projections of Polyhedra
2. Fourier-Motzkin Elimination Algorithm

3. Optimality Conditions

2 Projections of polyhedra
o 7 : R — RN* projects x onto its first k coordinates:

() = me (a1, .. xn) = (21, ..., Tk).

I, (S) = {Wk(:v) | x € S};
Equivalently

I, (S) = {(xl,...,zk) ‘ there exist zp11,...,2n

sit. (z1,...,2,) € S}.

2.1 The Elimination Algorithm

2.1.1 By example
e Consider the polyhedron

r1+x2 > 1
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T+ xo + 223 > 2
2x1 +3x3 > 3
T —4xrs > 4
—2x1 + 10 — 13 > .
e We rewrite these constraints
0>1—x1— 290
x3 > 1—(21/2) — (22/2)

x3 > 1—(221/3)

-1+ (21/4) > x3

—5 =221 + 29 > 3.

e Eliminate variable x3, obtaing polyhedron @

0 Z 1-— r1 — T2
—1421/4 > 1—(221/3)
—5—2r14+x9 > 1— ($1/2) — ($2/2)
-5 — 2:61 + X2 Z 1-— (21‘1/3)
2.2 The Elimination Algorithm
SLIDE 4
L. Rewrite 37 a;;jx; > b; in the form
n—1
ainwnz—zaijwj-i-bi, 1=1,...,m;
j=1

if a;n, # 0, divide both sides by a;,. By letting T = (x1,...,2,-1) that P
is represented by:

dj + f;f > T, if ajn <0,
0 > di + f1.T, if ag, = 0.

2. Let Q be the polyhedron in 2"~ ! defined by:

dj+f;§2di+f;§, ifam>0anda]—n<0,
0 > di + £, if ap, = 0.
Theorem:

The polyhedron @) constructed by the elimination algorithm is equal to the
projection IT,,_1 (P) of P.



2.3 Implications

SLIDE 5
e Let P C "% be a polyhedron. Then, the set
{zeR" ‘ there exists y € R* such that (x,y) € P}
is also a polyhedron.
e Let P C M™ be a polyhedron and let A be an m x n matrix. Then, the
set @ = {Azx | ¢ € P} is also a polyhedron.
e The convex hull of a finite number of vectors is a polyhedron.
2.4 Algorithm for LO
SLIDE 6
e Consider min ¢’z subject to « € P.
e Define a new variable 2y and introduce the constraint zp = ¢’x.
e Apply the elimination algorithm n times to eliminate the variables x4, ..., z,
e We are left with the set
Q= {zo | there exists & € P such that xp = c'm},
and the optimal cost is equal to the smallest element of Q.
3 Optimality Conditions
3.1 Feasible directions
SLIDE 7
e We are at € P and we contemplate moving away from @, in the direction
of a vector d € R™.
e We need to consider those choices of d that do not immediately take us
outside the feasible set.
e A vector d € R" is said to be a feasible direction at x, if there exists a
positive scalar 0 for which « + 0d € P.
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3.2
[ ]

x be a BFS to the standard form problem corresponding to a basis B.
z;=0,ieN,xg =B 'B.

We consider moving away from @, to a new vector x + 6d, by selecting a
nonbasic variable x; and increasing it to a positive value ¢, while keeping
the remaining nonbasic variables at zero.

Algebraically, d; =1, and d; = 0 for every nonbasic index 4 other than j.
The vector g of basic variables changes to g + 0dp.
Feasibility: A(x+6d) =B = Ad=0.

0 = Ad = Z?:l A;d; = Z:il AB(i)dB(i) + Aj = Bdp + Aj = dp =
~-B'A;.

Nonnegativity constraints?

— If & nondegenerate, xp > 0; thus xp + 0dp > 0 for 0 is sufficiently
small.

— If xdegenerate, then d is not always a feasible direction. Why?
Effects in cost?
Cost change: ¢/d = ¢; — ¢z B~ A; This quantity is called reduced cost
¢; of the variable z;.
Theorem

x BFS associated with basis B

¢ reduced costs
Then

If € > 0 = x optimal

x optimal and non-degenerate = ¢ > 0

Proof

y arbitrary feasible solution

d=y—xz=>Ax=Ay=b= Ad=0

:>BdB+ZAidi:0

iEN
=dg=-Y B 'Ad;
iEN
=cdd = CIBdB + Z cid;
iEN
=Y (¢i—czB 'A))di = Y @d;
iEN iEN
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e Sincey; >0and z; =0,i€ N, thend;, =y, —x; >0,i € N
ecdd=cdy—x)>0 =dy>ce
= x optimal

(b) Your turn
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